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Preface

In the second part of the twentieth century, algebraic methods have emerged as a
powerful tool to study theories of physical phenomena, especially those of quantal
systems. The framework of Lie algebras, initially introduced by Sophus Lie in the
last part of the nineteenth century, has been considerably expanded to include graded
Lie algebras, infinite-dimensional Lie algebras, and other algebraic constructions.
Algebras that were originally introduced to describe certain properties of a physical
system, in particular behavior under rotations and translations, have now taken the
center stage in the construction of physical theories.

This book contains a set of notes from lectures given at the Yale University
and other universities and laboratories in the last 20 years. The notes are intended
to provide an introduction to Lie algebras at the level of a one-semester graduate
course in physics. Lie algebras have been particularly useful in spectroscopy, where
they were introduced by Eugene Wigner and Giulio Racah. Racah’s lectures were
given at Princeton University in 1951 (Group Theory and Spectroscopy) and they
provided the impetus for the initial applications in atomic and nuclear physics. In
the intervening years, many other applications have been made. This book contains
a brief account of some of these applications to the fields of molecular, atomic,
nuclear, and particle physics. The application of Lie algebraic methods in physics
is so wide that often students are overwhelmed by the sheer amount of material to
absorb. This book is intended to give a basic introduction to the method and how it is
applied in practice, with emphasis to bosonic systems as encountered in molecules
(vibron model), and in nuclei (interacting boson model), and to fermionic systems
as encountered in atoms (atomic shell model), in nuclei (nuclear shell model), and in
hadrons (quark model). Exactly solvable problems in quantum mechanics are also
discussed.

Associated with a Lie algebra there is a Lie group. Although the emphasis of
these lecture notes is on Lie algebras, a chapter is devoted to Lie groups and to the
relation between Lie algebras and Lie groups.
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vi Preface

Many exhaustive books exist on the subject of Lie algebras and Lie groups.
Reference to these books is made throughout, so that the interested student can study
the subject in depth. A selected number of other books, not explicitly mentioned in
the text, are also included in the reference list, to serve as additional introductory
material and for cross-reference.

In the early stages of preparing the notes, I benefited from many conversations
with Morton Hamermesh, Brian Wybourne, Asim Barut, and Jin-Quan Chen, who
wrote books on the subject, but are no longer with us. This book is dedicated to their
memory. I also benefited from conversations with Robert Gilmore, who has written
a book on the subject, and with Phil Elliott, Igal Talmi, Akito Arima, Bruno Gruber,
Arno Böhm, Yuval Ne’eman, Marcos Moshinsky, Yuri Smirnov, and David Rowe,
who have made major contributions to this field.

I am very much indebted to Mark Caprio for a critical reading of the manuscript,
and for his invaluable help in preparing the final version of these lecture notes.

New Haven, CT, USA Francesco Iachello
May 2006



Preface to the Second Edition

Algebraic methods continue to be a powerful tool to study theories of physical
phenomena. This second edition contains an enlarged set of notes from lectures
given at the Yale University and other universities and laboratories in the last 6
years. Relatively to the first edition, three new chapters have been added, discussing
contractions of Lie algebras and introducing the concept of globally symmetric
Riemannian spaces (coset spaces). Explicit construction of some of these spaces,
especially those of interest in the study of bosonic systems and in quantum
mechanics, is included.

The notes are still intended to provide an introduction to Lie algebras and
applications at the level of a one-semester graduate course in physics. For this
reason, the additional material has been kept brief and at the same level of the
original material.

References to mathematics books where the interested reader can find details
on the somewhat elaborate constructions and proofs of Lie theory have also been
included.

Phil Elliott, Yuval Ne’eman, Marcos Moshinsky, and Larry Biedenharn, with
whom I had many conversations in preparing the first edition of this book, are no
longer with us. This second edition is dedicated to them.

I am very much indebted to Jenni-Mari Kotila for her help in preparing the final
version of these expanded lecture notes.

New Haven, CT, USA Francesco Iachello
January 2014
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Chapter 1
Basic Concepts

1.1 Definitions

The key notion in the definition of Lie algebras in physics is that of the commutator
(or bracket), denoted by Œ; �. The commutator of X and Y is defined as

ŒX; Y � D XY � YX: (1.1)

It satisfies the relations

ŒX;X� D 0I ŒX; Y � D �ŒY;X�: (1.2)

The operation Œ; � is in general neither commutative nor associative. The commutator
ŒX; Y � appears in quantum mechanics (Messiah 1958), and in classical mechanics,
where it is called Poisson bracket (Goldstein et al. 2002) and often denoted by a
curly bracket f; g instead of Œ; �.

Another key notion is that of number field, F . The number fields of interest
are: Real, R, Complex, C , Quaternion, Q, and Octonion, O . Since these lecture
notes are intended primarily for applications to quantal systems, where the basic
commutation relations between coordinates and momenta are

Œx;
1

i

@

@x
� D i; (1.3)

and to classical systems where the Poisson bracket is real, only real and complex
fields will be considered. Although formulations of quantum mechanics in terms of
quaternions and octonions have been suggested, Lie algebras over the quaternion
and octonion number fields will not be discussed here.

© Springer-Verlag Berlin Heidelberg 2015
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2 1 Basic Concepts

1.2 Lie Algebras

Lie algebras are named after the Norwegian mathematician Sophus Lie (1842–
1899). Most of what we know about the original formulation comes from Lie’s
lecture notes in Leipzig, as collected by Scheffers (1893).

A set of elements X˛.˛ D 1; : : :; r/ is said to form a Lie algebra G , written as
X˛ 2 G, if the following axioms are satisfied:

Axiom 1. The commutator of any two elements is a linear combination of the
elements in the Lie algebra

ŒX�;X�� D
X

�

c���X� : (1.4)

Axiom 2. The double commutators of three elements satisfy the Jacobi identity

ŒX�; ŒX� ;X� ��C ŒX� ; ŒX� ; X���C ŒX� ; ŒX�;X� �� D 0: (1.5)

The coefficients c��� are called Lie structure constants. They define the Lie
algebra. They satisfy

c��� D �c��� (1.6)

and

c	�� c
�
	� C c	�� c

�
	� C c	�� c

�
	� D 0: (1.7)

A tensor notation with covariant, X�:::, and contravariant, X�:::, indices has been
used in (1.4)–(1.7) and will be used in the remaining part of this chapter. In
this notation, the structure constants c��� are rank-3 tensors with one contravariant
and two covariant indices. The outer product of two tensors, for example two
covariant vectors, X� and Y� , is written X�Y� . The inner product of two tensors,
for example two vectors, is written X�Y

�. Also, unless otherwise specified, a
summation convention over repeated indices will be used

c���X� �
X

�

c���X� : (1.8)

Algebras are usually denoted by script (calligraphic) letters, G , or by lowercase
letters, g. The associated Lie groups, to be discussed in Chap. 3, are usually denoted
by capital letters, G. However, often no distinction is made between groups and
algebras and the same letter is used for both. Unless otherwise specified, the notation
lowercase-capital will be used in these notes.
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The r elements, X˛, span a r-dimensional linear vector space L. The definition
given above in an ‘operational’ definition. A formal, abstract, ‘mathematical’
definition is:

Definition 1. A vector space L over a number field F , with an operation L � L !
L, denoted ŒX; Y � and called the commutator of X and Y , is called a Lie algebra
over F if the following axioms are satisfied:

(1) The operation is bilinear.
(2) ŒX;X� D 0 for all X in L.
(3) ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX; Y �� D 0 (X; Y;Z 2 L).

The properties of bilinearity, i.e., ŒaX C bY;Z� D a ŒX;Z� C b ŒY;Z� and
ŒX; bY C cZ� D b ŒX; Y � C c ŒX;Z�, and of vanishing ŒX;X� D 0 together
guarantee the antisymmetry property (1.2) of the commutator. The closure of L
under the commutator (L � L ! L) gives Axiom 1 above for the generators.
Property (3) gives Axiom 2 above (Humphreys 1972).

A Lie algebra is called “real” if the field F is R, it is called “complex” if F is
C . Real Lie algebras have real structure constants, while complex Lie algebras have
structure constants which can be real or complex.

Example 1. The algebra

ŒX1;X2� D X3 ; ŒX2;X3� D X1 ; ŒX3;X1� D X2 (1.9)

is a real Lie algebra with three elements (r D 3).This is the angular momentum
algebra in three dimensions, so.3/.

Example 2. The algebra

ŒX1;X2� D X3 ; ŒX2;X3� D �X1 ; ŒX3;X1� D X2 (1.10)

is also a real Lie algebra with three elements (r D 3). This is the Lorentz algebra in
2C 1 dimensions, so.2; 1/.

Note the difference between the two (a sign in the commutation relations).

1.3 Change of Basis

Let X�.� D 1; : : :; r/ be a basis in the r-dimensional vector space L. It is possible
to change the basis

X 0
� D a�� X� (1.11)

where a�� is non-singular. The new commutation relations of the algebra are

h
X 0
�; X

0
�

i
D c0�

��X
0
� . (1.12)
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From (1.4) and (1.11), the new structure constants c0�
�� are obtained from the old

structure constants c
�� by solving the set of equations

c0 �
�� a



� D a�� a

�
� c



��: (1.13)

Particularly simple is the change of basis in which each element is multiplied by a
real number (sometimes called a normalization transformation).

Example 3. The transformation

X 0
1 D p

2X1 ; X
0
2 D p

2X2 ; X
0
3 D X3 (1.14)

changes the commutation relations of the Lie algebra so.3/ into

ŒX 0
1; X

0
2� D 2X 0

3 I ŒX 0
2; X

0
3� D X 0

1 I ŒX 0
3; X

0
1� D X 0

2: (1.15)

Lie algebras that have the same commutation relations up to a change of basis are
called isomorphic. This definition is ‘operational’. A formal, abstract, mathematical
definition of isomorphism is:

Definition 2. Two Lie algebras g; g0 over F are isomorphic if there exists a vector
space isomorphism � W g ! g0 satisfying � .ŒX; Y �/ D Œ�.X/; �.Y /� for all
X; Y in g. (Humphreys 1972, p.1) Isomorphism of algebras will be denoted by
the symbol �. Isomorphisms of Lie algebras will be discussed in Chap. 2. An
example is:

Example 4. The Lie algebras so.3/ and su.2/ are isomorphic

so.3/ � su.2/: (1.16)

1.4 Complex Extensions

The change of basis (1.11) can be complex. An example is multiplication by the
imaginary unit on so.3/,

J1 D i X1 ; J2 D i X2 ; J3 D i X3: (1.17)

The commutation relations are now

ŒJ1 ; J2� D i J3 ; ŒJ2 ; J3� D i J1 ; ŒJ3 ; J1� D i J2: (1.18)

The algebra composed of elements J1; J2; J3 is the ‘angular momentum algebra’
often quoted in quantum mechanics books.
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If one takes linear combinations of elements, A;B , of a real Lie algebra g, with
complex coefficients, and defines ŒAC iB; C � D ŒA; C �C i ŒB; C � one obtains the
complex extension of the real Lie algebra. Starting from a real algebra g, by making
a complex change of basis, one can construct a complex extension of g. In some
cases, the complex extension of different real Lie algebras is the same.

Example 5. The real Lie algebras so.2; 1/ and so.3/ have the same complex
extension.

Consider the real Lie algebra so.2; 1/ of Example 2. By making the change of
basis

Y1 D X1 ; Y2 D �iX2 ; Y3 D �iX3 ; (1.19)

one obtains

ŒY1; Y2� D Y3 I ŒY2; Y3� D Y1 I ŒY3; Y1� D Y2: (1.20)

These are the same commutation relations of the real Lie algebra so.3/ of Exam-
ple 1.

1.5 Lie Subalgebras

A subset of elements, Yˇ , closed with respect to commutation is called a subalgebra

X˛ 2 gI Yˇ 2 g0I g � g0 (1.21)

The symbol � is used to indicate that g0 is a subalgebra of g. The subset satisfies
the commutation relations

�
Y�; Y�

� D c���Y� (1.22)

Example 6. The single element X3 forms a Lie subalgebra of so.3/ 3 X1;X2;X3;

since

ŒX3;X3� D 0: (1.23)

This is so.2/; the angular momentum algebra in two dimensions, so.3/ � so.2/.
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1.6 Abelian Algebras

These are a special type of algebras, named after the Norwegian mathematician
Niels Abel (1802–1829).An Abelian algebra,A, is an algebra for which all elements
commute,

ŒX�;X�� D 0 for any X� 2 A ; X� 2 A: (1.24)

Example 7. The algebra so.2/ 3 X3 is Abelian, since

ŒX3;X3� D 0: (1.25)

Any algebra contains a trivial Abelian subalgebra, composed of a single element
X�, since

�
X�;X�

� D 0. Another non-trivial example is the translation algebra in
two dimensions, t.2/ 3 X1;X2.
Example 8. The algebra t.2/ with commutation relations

ŒX1;X2� D 0 ; ŒX1;X1� D 0 ; ŒX2;X2� D 0; (1.26)

is Abelian.

1.7 Direct Sum

Consider two commuting algebras g1 3 X˛ , g2 3 Yˇ, satisfying

ŒX�;X� � D c���X� ;

ŒY�; Y� � D c0�
��Y� ;

ŒX�; Y� � D 0: (1.27)

The commuting property is denoted by g1 \ g2 D 0. The set of elements X˛; Yˇ
forms an algebra g, called the direct sum,

g D g1 ˚ g2: (1.28)

Sometimes, it is possible to rewrite a Lie algebra as a direct sum of other Lie alge-
bras. Consider, the algebra so.4/ 3 X1;X2;X3; Y1; Y2; Y3, satisfying commutation
relations

ŒX1;X2� D X3 ; ŒX2;X3� D X1 ; ŒX3;X1� D X2

ŒY1; Y2� D X3 ; ŒY2; Y3� D X1 ; ŒY3; Y1� D X2
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ŒX1; Y1� D 0 ; ŒX2; Y2� D 0 ; ŒX3; Y3� D 0

ŒX1; Y2� D Y3 ; ŒX1; Y3� D �Y2
ŒX2; Y1� D �Y3 ; ŒX2; Y3� D Y1

ŒX3; Y1� D Y2 ; ŒX3; Y2� D �Y1 (1.29)

By a change of basis

Ji D Xi C Yi

2
; Ki D Xi � Yi

2
.i D 1; 2; 3/ (1.30)

the algebra can be brought to the form

ŒJ1; J2� D J3 ŒJ2; J3� D J1 ŒJ3; J1� D J2

ŒK1;K2� D K3 ŒK2;K3� D K1 ŒK3;K1� D K2

ŒJi ;Kj � D 0 .i; j D 1; 2; 3/: (1.31)

In the new form, one can see that the algebra so.4/ is the direct sum of two so.3/
algebras.

Example 9. The algebra so.4/ is isomorphic to the direct sums

so.4/ � so.3/˚ so.3/ � su.2/˚ su.2/ � sp.2/˚ sp.2/: (1.32)

The splitting is rarely possible. Consider for example, the algebra
so.3; 1/ 3 X1;X2;X3; Y1; Y2; Y3, satisfying commutation relations

ŒX1;X2� D X3 ; ŒX2;X3� D X1 ; ŒX3;X1� D X2

ŒY1; Y2� D �X3 ; ŒY2; Y3� D �X1 ; ŒY3; Y1� D �X2
ŒX1; Y1� D 0 ; ŒX2; Y2� D 0 ; ŒX3; Y3� D 0

ŒX1; Y2� D Y3 ; ŒX1; Y3� D �Y2
ŒX2; Y1� D �Y3 ; ŒX2; Y3� D Y1

ŒX3; Y1� D Y2 ; ŒX3; Y2� D �Y1: (1.33)

This algebra cannot be split into a direct sum of real Lie algebras. However,
sometimes, the splitting is possible by going to the complex extension of the algebra.
For example by taking the combination

Jj D Xj C iYj
2

; Kj D Xj � iYj
2

.j D 1; 2; 3/ (1.34)
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one can show that the elements Jj ;Kj satisfy (1.31). The algebras so.4/ and so.3; 1/
have the same complex extension, and can be split in the same fashion.

1.8 Ideals (Invariant Subalgebras)

Consider an algebra g and its subalgebra g0, X˛ 2 g, Yˇ 2 g0, g � g0: Since g0 is a
subalgebra, it satisfies

ŒY�; Y� � D c0�
��Y� . (1.35)

If, in addition,

ŒY�; X� � D c���Y� , (1.36)

then g0 is called an invariant subalgebra (ideal) of g. As an example, consider the
Euclidean algebra e.2/, composed of three elements, X1;X2;X3, satisfying

ŒX1;X2� D X3 ŒX1;X3� D �X2 ŒX2;X3� D 0: (1.37)

Example 10. g0 3 X2;X3 is an (Abelian) ideal of g � e.2/ 3 X1;X2;X3:

1.9 Semisimple Algebras

An algebra which has no Abelian ideals is called semisimple.

Example 11. The algebra so.3/

ŒX1;X2� D X3 ŒX2;X3� D X1 ŒX3;X1� D X2 (1.38)

is semisimple.

Example 12. The algebra e.2/

ŒX1;X2� D X3 ŒX1;X3� D �X2 ŒX2;X3� D 0 (1.39)

is non-semisimple.

Obviously g itself [and 0, the subspace consisting only of the zero vector] are
ideals of g, called improper or trivial ideals. An algebra is called simple if it contains
no ideals except g and 0. A simple Lie algebra is necessarily semisimple, though
the converse need not hold. An additional condition for semisimplicity is that the
algebra g not be Abelian, Œg; g� ¤ 0. This implies that simple and semisimple Lie
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algebras must necessarily contain more than one element. The algebras so.2/ �
u.1/ with commutation relation

ŒX3;X3� D 0 (1.40)

cannot be classified as simple or semisimple, although so.2/ is often included in the
classification of semisimple Lie algebras.

1.10 Semidirect Sum

If an algebra g has two subalgebras g1,g2 such that

Œg1; g1� 2 g1, Œg2; g2� 2 g2, Œg1; g2� 2 g1, (1.41)

then the algebra g is said to be the semidirect sum of g1 and g2. Clearly g1 is an
ideal of g. Note that g1 does not to be an ideal of g2. It suffices that it acts as in
(1.41). Normally, one writes a semidirect sum by first giving the ideal and then the
residual subalgebra, as

g D g1 ˚s g2. (1.42)

Example 13. The Euclidean algebra e.2/, composed of three elements,X1;X2;X3,
is the semidirect sum of the rotation algebra in two dimensions, so.2/, composed
of the single element, X1, and the translation algebra in two dimensions, t.2/,
composed of two commuting elements, X2;X3.

In the notation of (1.42)

e.2/ D t.2/˚s so.2/: (1.43)

1.11 Metric Tensor

With the Lie structure constants one can form a tensor, called metric tensor,

g�� D g�� D c���c
�

�� : (1.44)

The metric tensor is also called Killing form named after Killing, who, in a series
of papers in the 1880s, discussed its properties (Killing 1888,1889a,1889b,1890).
The metric tensor is a geometric concept used by physicists. In the mathematical
literature the Killing form is an algebraic concept (Humphreys 1972, p.21).
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The metric tensor was used by Cartan to identify semisimple Lie algebras.
Cartan’s criterion for deciding if a Lie algebra is semisimple is:

Theorem 1. A Lie algebra g is semisimple if, and only if,

det j g�� j¤ 0 . (1.45)

In other words, an inverse g�� of the metric tensor g�� exists

g��g�� D ı�� ; (1.46)

where

ı�� D
�
1 if � D �

0 if � ¤ �
: (1.47)

Example 14. The algebra so.3/ is semisimple.

The metric tensor of so.3/ is

g�� D
0

@
�2 0 0

0 �2 0

0 0 �2

1

A ; (1.48)

also written in compact form g�� D �2ı��. The determinant of the metric tensor is

det j g�� jD �8 (1.49)

and thus the algebra so.3/ is semisimple.

Example 15. The algebra so.2; 1/ is semisimple.

The metric tensor of so.2; 1/ is

g�� D
0

@
�2 0 0

0 C2 0

0 0 C2

1

A : (1.50)

The determinant of the metric tensor is again

det j g�� jD �8 (1.51)

and thus the algebra so.2; 1/ is semisimple.

Example 16. The algebra e.2/ is non-semisimple.
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Finally, consider the algebra e.2/ with metric tensor

g�� D
0

@
�2 0 0
0 0 0

0 0 0

1

A : (1.52)

In this case

det j g�� jD 0 (1.53)

and thus the algebra e.2/ is non-semisimple.

1.12 Compact and Non-Compact Algebras

A real semisimple Lie algebra is compact if its metric tensor is negative definite.

Example 17. The algebra so.3/ is compact.

The metric tensor of so.3/ is negative definite. In its diagonal form all elements
are negative.

Example 18. The algebra so.2; 1/ is non-compact.

The metric tensor of so.2; 1/ is non-negative definite. In its diagonal form some
elements are positive.

1.13 Derived Algebras

Starting with a Lie algebra, g, with elements X�, it is possible to construct other
algebras, called derived algebras, by taking commutators

g.0/ D g

g.1/ D Œg.0/; g.0/�

g.2/ D Œg.1/; g.1/�

: : : (1.54)

The sequence g.0/; g.1/; g.2/; : : :; g.i/ is called a derived series. For example, starting
with the Euclidean algebra, e.2/, with elements

g + X1;X2;X3 (1.55)
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satisfying the commutation relations (1.39), one has

g.1/ + X2;X3

g.2/ + 0: (1.56)

If, for some positive k;

g.k/ + 0 (1.57)

the algebra is called solvable. The derived series should not be confused with
derivation of g, denoted by Der g [J.E. Humphreys, loc.cit., p.4].

Example 19. The algebra e.2/ is solvable.

From (1.56),

Œe.2/�.2/ + 0: (1.58)

1.14 Nilpotent Algebras

Starting with a Lie algebra, g, with elements, X�, it is possible to construct another
series, called descending central series, or lower central series, as

g0 D g

g1 D Œg; g� D g.1/

g2 D Œg; g1�

: : :

gi D �
g; gi�1

�
(1.59)

If, for some positive k;

gk D 0 (1.60)

the algebra is called nilpotent.

Example 20. The algebra e.2/ is not nilpotent

Starting with

g + X1;X2;X3; (1.61)
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satisfying (1.39), one has

g1 + X2;X3

g2 + X2;X3

: : : . (1.62)

1.15 Invariant Casimir Operators

These operators play a central role in applications. They are named after the Dutch
physicist Casimir, who introduced them in 1931 for the angular momentum algebra
so.3/ (Casimir 1931). An operator, C , that commutes with all the elements of a Lie
algebra g

ŒC;X� � D 0 for all X� 2 g (1.63)

is called an invariant Casimir operator. Casimir operators can be linear, quadratic,
cubic, . . . in the elements X� . They live in the enveloping algebra of g, defined
in Sect. 2.16. A Casimir operator is called of order p if it contains products of p
elements X� ,

Cp D
X

˛1;::;˛p

f ˛1˛2:::˛pX˛1X˛2 : : :X˛p : (1.64)

The summation is explicitly displayed in this formula. Also, if C commutes with
g, so does aC , C2,. . . . The number of independent Casimir operators of a Lie
algebra will be discussed in Chap. 5. The quadratic (p D 2) Casimir operator of
a semisimple algebra can be simply constructed from the metric tensor

C2 D g�� X� X� D g��X
�X� � C: (1.65)

Proof. Evaluate the commutator of C and X�

ŒC;X�� D g�� ŒX� X� ;X�� D g�� X�ŒX� ;X� �C g�� ŒX� ;X� �X� D
D g�� X� c

�
�� X� C g�� c��� X� X� D

D g�� c��� X� X� C g�� c��� X� X� D g�� c��� .X� X� C X� X�/

D g�� g�� c��� .X� X� C X� X�/ D 0 (1.66)

The last line follows from the fact that the product g��g�� is symmetric under � !
�; � ! �, the product .X�X� CX�X�/ is symmetric under � ! �, and the structure
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constant c��� is antisymmetric under � ! � . For a semisimple Lie algebra, indices
can be raised and lowered using the metric tensor

c��� D g�� c��� : (1.67)

Higher order Casimir operators can be constructed in a similar fashion

Cp D c
ˇ2
˛1ˇ1

c
ˇ3
˛2ˇ2

: : : c
ˇ1
˛pˇp

X˛1 X˛2 : : : X˛p : (1.68)

For the algebra so.3/, the inverse of the metric tensor is

g�� D
0

@
� 1
2
0 0

0 � 1
2
0

0 0 � 1
2

1

A (1.69)

giving

C D �1
2
.X2

1 C X2
2 C X2

3 /: (1.70)

For the algebra so.2; 1/

C D �1
2

�
X2
1 �X2

2 �X2
3

�
: (1.71)

Note the minus signs. By multiplying C by 2 and the elements by i , one obtains for
so.3/

C 0 D 2C D J 21 C J 22 C J 23 : (1.72)

This is the usual form in which the Casimir operator of the angular momentum
algebra so.3/ appears in quantum mechanics textbooks.

1.16 Invariant Operators for Non-Semisimple Algebras

For non-semisimple Lie algebras, Casimir operators cannot be simply constructed.
One introduces a related notion of invariant operators that commute will all
elements.

Example 21. The invariant operator of the Euclidean algebra e.2/ 3 X1;X2;X3 is

C D X2
2 C X2

3 (1.73)
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Proof. The commutators are

�
X2
2 ;X1

� D X2ŒX2;X1� C ŒX2;X1� X2 D �2X2 X3
�
X2
3 ;X1

� D X3ŒX3;X1� C ŒX3;X1� X3 D 2X2 X3: (1.74)

Hence

ŒC;X�� D 0 for any X� 2 g: (1.75)

1.17 Contractions of Lie Algebras

Let X1; : : :; Xr be the elements of the Lie algebra g. For a subset X1; : : :; X�, � � r

define

Yi D "Xi , i D 1; : : :; � � r , (1.76)

and express the commutation relations in terms of the Yi ,

�
Yi ; Yj

� D ckij"Yk C cmij "
2Xm;

ŒYi ; Xm� D ckimYk C cnim"Xn;

ŒXm;Xn� D cimn"
�1Yi C csmnXs;

i; j; k � �, � < m; n; s � r . (1.77)

Now, let " ! 0. If

cimn D 0, i � �, � < m; n � r , (1.78)

the commutation relations

�
Yi ; Yj

� D 0; ŒYi ; Xk� D ckimYk; ŒXm;Xs� D csmnXs , (1.79)

define a Lie algebra, called the Inonu contracted Lie algebra g0

g �!c g
0: (1.80)

Example 22. The Euclidean algebra e.2/ is a contraction of the Lorentz algebra
so.2; 1/.

The commutation relations of the complex extension of so.2; 1/ are

ŒJ1; J2� D iJ3; ŒJ2; J3� D �iJ1; ŒJ3; J1� D iJ2; (1.81)
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with Casimir operator

C D J 21 � J 22 � J 23 : (1.82)

Introducing

Px D "J2; Py D "J3; Lz D J1; (1.83)

the commutation relations become

�
Px; Py

� D �i"2Lz;
�
Lz; Py

� D �iPx; ŒLz; Px� D iPy: (1.84)

Letting " ! 0, we obtain the commutation relations (1.39) of e.2/,

�
Px; Py

� D 0;
�
Lz; Py

� D �iPx; ŒLz; Px� D iPy; (1.85)

with invariant operator

C 0 D P2
x C P2

y : (1.86)

[Also so.3/ contracts to e.2/ since so.3/ and so.2; 1/ are complex extensions of
each other].

Example 23. The Euclidean algebra e.3/ is a contraction of the Lorentz algebra
so.3; 1/.

The commutation relations of so.3; 1/ written in terms of elements Li , Ki , .i D
1; 2; 3/, are

�
Li ; Lj

� D iijkLk;
�
Li ;Kj

� D iijkKk;
�
Ki ;Kj

� D �iijkLk; (1.87)

where ijk is the Levi-Civita symbol. Defining Pi D ��1Ki.i D 1; 2; 3/ and letting
� ! 1, they become,

�
Li ; Lj

� D iijkLk;
�
Li ; Pj

� D iijkPk ,
�
Pi ; Pj

� D 0: (1.88)

(Here � D "�1 is used not to confuse it with the Levi-Civita symbol). These are
the commutation relations of the algebra e.3/ composed of the three components
P1; P2; P3 of the momentum and the three components L1;L2; L3 of the angular
momentum in three dimensions. The algebra e.3/ is the semidirect sum of so.3/
and t.3/,

e.3/ D t.3/˚s so.3/: (1.89)

Example 24. The Poincare’ algebra p.4/ is a contraction of the de Sitter algebra
so.3; 2/.
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The commutation relations of so.3; 2/written in terms of the 10 elementsMab D
�Mba .a; b D 1; : : :; 5/ are

ŒMab;Mcd� D �.gbcMad � gacMbd C gadMbc � gbdMac/; (1.90)

with gab D .�;�;�;C;C/. Defining P	 D "M5	, and letting " ! 0, we obtain
the commutation relations of p.4/, the Poincare’ algebra in four dimensions,

�
P	;P�

� D 0;
�
M	�; P	

� D �g��P	 � g	�P�; 	; �; � D 1; 2; 3; 4: (1.91)

The algebra p.4/ composed of the four components,P	, of the four-momentum and
the six components,M	� , of the angular momentum and boost, is the semidirect sum
of so.3; 1/ and t.3; 1/

p.4/ D t.3; 1/˚s so.3; 1/: (1.92)

[Also, so.4; 1/, with metric gab D .�;�;�;C;�/, contracts to p.4/].
The relevance of the contraction process is that the representation theory of the

contracted Lie algebras g0 can then be done starting from that of the Lie algebras g
and letting " ! 0. Therefore, the contraction process greatly simplifies the treatment
of Euclidean and Poincare’ algebras.

1.18 Structure of Lie Algebras

The structure of Lie algebras, semisimple or not, can be investigated by inspection.
A detailed account is given by Kirillov (1976).

1.18.1 Algebras with One Element

We begin with the case r D 1. In this case there is only one element, X , and one
possibility

.a/ ŒX;X� D 0 . (1.93)

The algebra is Abelian.

Example 22. The algebras so.2/ � u.1/ are examples of Kirillov’s case 1a.



18 1 Basic Concepts

1.18.2 Algebras with Two Elements

Next consider the case r D 2. In this case, there are two elements, X1;X2, and two
possibilities

.a/ ŒX1;X2� D 0; (1.94)

and

.b/ ŒX1; X2� D X1 . (1.95)

In case (a), the algebra is Abelian. In case (b), X1 is an Abelian ideal.

Example 23. The translation algebra t.2/ is an example of Kirillov’s case 2a.

1.18.3 Algebras with Three Elements

For r D 3, there are three elements, X1;X2;X3 and four possibilities:

.a/ ŒX1;X2� D ŒX2;X3� D ŒX3;X1� D 0 (1.96)

.b/ ŒX1;X2� D X3I ŒX1;X3� D ŒX2;X3� D 0 or

ŒX1;X3� D X2I ŒX1;X2� D ŒX2;X3� D 0; (1.97)

.c/ ŒX1;X2� D 0I ŒX3;X1� D ˛X1 C ˇX2I ŒX3;X2� D �X1 C ıX2; (1.98)

where the matrix

ˇ
ˇ
ˇ̌˛ ˇ
� ı

ˇ
ˇ
ˇ̌ is non-singular, and

.d/ ŒX1; X2� D X3I ŒX2; X3� D X1I ŒX3; X1� D X2 or

ŒX1; X2� D X3I ŒX2; X3� D �X1I ŒX3; X1� D X2 : (1.99)

In case (a), the algebra is Abelian.

Example 24. The translation algebra in three dimensions t.3/ is an example of
Kirillov’s case 3a.

Example 25. The Euclidean algebra e.2/ is Kirillov’s case 3c, with ˛ D 0; ˇ D
1; � D �1; ı D 0.

Example 26. The algebras so.3/ and so.2; 1/ are examples of Kirillov’s case 3d.
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This procedure becomes very cumbersome as the number of elements in the
algebra increases. However, it allows one to classify all Lie algebras, including some
non-semisimple algebras of physical interest, such as the Euclidean algebras. It has
explicitly been carried out to r D 8. A different method, due to Cartan, provides a
classification of semisimple Lie algebras for any number of elements.

Further details on the basic concepts of Lie algebras, including the somewhat
elaborate constructions and proofs of Lie theory, can be found in (Bröcker and tom
Dieck 1985); (Chaichian and Hagedorn 1998); (Cornwell 1997); (Duistermaat and
Kolk 2000); (Fulton and Harris 1991); (Hall 2003); (Hermann 1966); (Hladik 1999);
(Jacobson 1962); (Kirillov 2008); (Sattinger and Weaver 1986); (Serre 1965); (Weyl
1925).



Chapter 2
Semisimple Lie Algebras

2.1 Cartan–Weyl Form of a (Complex) Semisimple Lie
Algebra

In 1894, the French mathematician Cartan provided a way to classify all semisimple
Lie algebras (Cartan 1894). The subject was subsequently taken up by Weyl (1926)
and van der Waerden (1933). We begin by rewriting the algebra as

X� � .Hi ; E˛/ ; .i D 1; : : :; l/: (2.1)

The elements Hi form the maximal Abelian subalgebra, often called the Cartan
subalgebra,

ŒHi ;Hk� D 0 .i; k D 1; : : :; l/: (2.2)

The number of elements in the Cartan subalgebra, l , is called the rank of the algebra.
The commutation relations of Hi with E˛ are

ŒHi ; E˛� D ˛i E˛ (2.3)

while those of the E’s among themselves are

ŒE˛;Eˇ� D N˛ˇ E˛Cˇ .if ˛ C ˇ ¤ 0/ (2.4)

ŒE˛;E�˛� D ˛iHi : (2.5)

The ˛i ’s are called roots andN˛ˇ is a normalization. This form of the Lie algebra is
called the Cartan–Weyl form.

© Springer-Verlag Berlin Heidelberg 2015
F. Iachello, Lie Algebras and Applications, Lecture Notes in Physics 891,
DOI 10.1007/978-3-662-44494-8__2
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2.2 Graphical Representation of Root Vectors

One considers the ˛i ’s .i D 1; : : :; l/ as the components of a covariant vector lying
in an l-dimensional weight space with scalar product

.˛; ˇ/ � ˛i ˇi D ˛i ˇ
i : (2.6)

Van der Waerden derived a set of rules for the algebra to be a semisimple Lie algebra.

Rule 1. If ˛ is a root, so is �˛.

Rule 2. If ˛, ˇ are roots, 2.˛;ˇ/
.˛;˛/

is an integer.

Rule 3. If ˛, ˇ are roots, ˇ � 2˛
.˛;ˇ/

.˛;˛/
is a root.

From these, it follows that the angle ' between roots

cos' D .˛; ˛/
p
.˛; ˛/.ˇ; ˇ/

(2.7)

can take the values

cos2 ' D 0;
1

4
;
1

2
;
3

4
; 1

' D 0ı; 30ı; 45ı; 60ı; 90ı (2.8)

Roots can be displayed graphically in a root diagram.
For rank l D 1, the root diagram is a line, and there is only one possibility

(Fig. 2.1).
The algebra, called A1 by Cartan and so.3/ � su.2/ by physicists, has three

elements, r D 3.
For rank l D 2, the root diagram is planar. There are several possibilities

(Fig. 2.2):

1. ' D 30ı
This algebra called G2 by Cartan, has 14 elements, r D 14.

2. ' D 45ı
This algebra called B2 by Cartan and so.5/ by physicists has 10 elements,

r D 10.
3. ' D 60ı

so(3)~su(2)~A1

Fig. 2.1 Root diagram of the rank l D 1 algebra
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a

G2

b

so(5)~B2

c

su(3)~A2

d

so(4)~so(3) Åso(3)
~D2

Fig. 2.2 Root diagrams of rank l D 2 algebras

sp(4)~C2

Fig. 2.3 Root diagram of the algebra C2

This algebra, called A2 by Cartan and su.3/ by physicists has 8 elements,
r D 8.

4. ' D 90ı
This algebra, calledD2 by Cartan and so.4/ by physicists, has r D 6 elements.

It can be seen as the direct sum of two A1 algebras, D2 � A1 ˚ A1 or so.4/ �
so.3/˚ so.3/.

The Cartan classification of rank-2 algebras contains also the algebra C2, called
sp.4/ by physicists. The root diagram of C2 is identical to that of B2 rotated by 45ı
(Fig. 2.3).

The algebras C2 and B2 are isomorphic, sp.4/ � so.5/.
For rank l D 3 the root diagram is three-dimensional and it will not be drawn

here.
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2.3 Explicit Construction of the Cartan–Weyl Form

For applications, it is of interest to construct explicitly Lie algebras in Cartan–Weyl
form. The rank l D 1 algebra, A1 (Fig. 2.4) has three elements,H1;EC1; E�1, with
commutation relations,

ŒH1;H1� D 0I ŒH1;E˙1� D ˙E˙1I ŒEC1; E�1� D H1 (2.9)

This algebra, being the angular momentum algebra su.2/ � so.3/, is of great
interest in quantum mechanics, where it is usually written in terms of the physical
angular momentum operators Jx; Jy; Jz. By taking the combinations

Jz D Jz , J˙ D Jx ˙ iJy (2.10)

one obtains the Cartan–Weyl form, with commutation relations

ŒJz; Jz� D 0I ŒJz; J˙� D ˙J˙I ŒJC; J
�

� D 2Jz: (2.11)

The factor of two in the last commutator is due to a different normalization of the
elements of the algebra. One can also see that, in this case, the Abelian Cartan
subalgebra is composed of only one element, Jz, while the Weyl elements are JC
and J�. These elements are called raising and lowering operators.

Another important construction is that of the rank l D 2 algebra A2 (Fig. 2.5).
This algebra has 8 elements,

H1;H2 ; E˙˛ ; E˙ˇ ; E˙.˛Cˇ/ (2.12)

with commutation relations

ŒH1 ; E˙˛� D ˙ 1

2
p
3
E˙˛ ŒH2 ; E˙˛� D ˙1

2
E˙˛

0 +1−1

Fig. 2.4 Root diagram of the algebra A1 with roots explicitly displayed

a+b

a−b

−(a+b)

−a b

Fig. 2.5 Root diagram of the algebra A2 with roots explicitly displayed



2.4 Dynkin Diagrams 25

ŒH1 ; E˙ˇ� D ˙ 1

2
p
3
E˙ˇ ŒH2 ; E˙ˇ� D ˙1

2
E˙ˇ

ŒH1 ; E˙.˛Cˇ/� D ˙ 1p
3
E˙.˛Cˇ/ ŒH2 ; E˙.˛Cˇ/� D 0

ŒE˛;E�˛� D H1

2
p
3

C H2

2
ŒEˇ;E�ˇ� D H1

2
p
3

� H2

2

ŒE.˛Cˇ/; E�.˛Cˇ/� D H1p
3

ŒE˛;Eˇ� D 1p
6
E˛Cˇ

ŒE˛;E.˛Cˇ/� D 0 ŒEˇ;E.˛Cˇ/� D 0

ŒE˛;E�.˛Cˇ/� D � 1p
6
E�ˇ ŒEˇ;E�.˛Cˇ/� D 1p

6
E�˛

ŒHi ;Hj � D 0 .i; j D 1; 2/ (2.13)

The algebra has two Cartan elements and six Weyl elements (raising and lowering
operators).

2.4 Dynkin Diagrams

The root diagrams for rank l � 3 cannot be displayed easily. The Russian
mathematician Dynkin devised a method to display root diagrams of all semisimple
Lie algebras (Dynkin 1947, 1962). We begin by introducing the notion of positive
root.

Definition 1. Positive roots, ˛.C/, are those for which, in some arbitrary frame, its
first coordinate different from zero is positive.

The number of positive roots is half of non-null roots.

Example 1. Root diagram of B2

The roots are .1; 0/ .1; 1/ .0; 1/ .�1; 1/ .�1; 0/ .�1;�1/ .0;�1/ .1;�1/. The
positive roots are .1; 0/ .1; 1/ .0; 1/ .1;�1/, with sum

P
˛.C/ D .3; 1/: We next

introduce the notion of simple roots.

Definition 2. A simple root is a positive root which cannot be decomposed into the
sum of positive roots.

In the case of B2 (Fig. 2.6) , the two roots .1; 0/ and .1; 1/ can be decomposed as
.1; 0/ D .1;�1/C .0; 1/ and .1; 1/ D .1; 0/C .0; 1/. The simple roots are thus only
˛ � .0; 1/ and ˇ � .1;�1/. Dynkin showed that the angle between two simple
roots can only be 90ı; 120ı; 135ı; 150ı and the normalization
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(1,0)

(1,1)(0,1)(

(

( (0, (1,

1,1)

1,0)

1)1, 1) 1)

Fig. 2.6 Root diagram of the algebra B2 with roots explicitly displayed

135

1

a

b

Fig. 2.7 Simple roots of B2

.ˇ; ˇ/

.˛; ˛/
D

8
ˆ̂
<

ˆ̂
:

1 #˛;ˇ D 120ı
2 #˛;ˇ D 135ı
3 #˛;ˇ D 150ı

undetermined #˛;ˇ D 90ı
(2.14)

The root ˛ is called short and the root ˇ is called long. When plotted as before, the
simple root diagram of B2 appears as in Fig. 2.7. All information on the Lie algebra
can then be condensed into a Dynkin diagram. In this diagram, the angle # between
roots is indicated by

# D 120ı single line

# D 135ı double line

# D 150ı triple line

# D 90ı not joined (2.15)

A short root is indicated by a filled dot 
 , while a long root is indicated by an open
dot ı .

Example 2. Dynkin diagrams of rank two algebras

Dynkin diagrams of rank two algebras are shown in Fig. 2.8.
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B2~C2 so(5)~sp(4)

A2 su(3)

D2 so(4)~so(3)Åso(3)

G2

Fig. 2.8 Dynkin diagrams of rank-2 algebras

Table 2.1 Cartan classification of complex semisimple Lie algebras (and u.n/)

Name Label Cartan Order (r) Rank (l)

Special unitary su.n/ Al n2 � 1 n� 1

[Special] orthogonal so.n/ (n odd) Bl n.n� 1/=2 .n� 1/=2

Symplectic sp.n/ (n even) Cl n.nC 1/=2 n=2

[Special] orthogonal so.n/ (n even) Dl n.n� 1/=2 n=2

Exceptional G2 G2 14 2

F4 F4 52 4

E6 E6 78 6

E7 E7 133 7

E8 E8 248 8

Unitary u.n/ – n2 n

2.5 Classification of (Complex) Semisimple Lie Algebras

All complex semisimple Lie algebras have been classified by Cartan and are given
in Table 2.1. Because of its importance, the non-semisimple Lie algebra u.n/ is
included as well. This algebra is of order n2 and rank n.

There is no difference between orthogonal and special orthogonal algebras and
hence ‘special’ has been put in brackets in the table. The Abelian algebra so.2/ �
u.1/ composed of a single element is included in the Cartan classification under
so.n/ n Deven, although strictly speaking it is not possible to apply to it Cartan’s
criterion since it does not have any subalgebra except itself.

2.6 Rules for Constructing the Root Vector Diagrams
of Classical Lie Algebras

Van der Waerden derived a set of rules for constructing the root-vector diagrams
of all complex semisimple Lie algebras. The rules for the classical Lie algebras
Al; Bl ; Cl ; and Dl are:

1. Al � su.lC1/. Introduce lC1mutually orthogonal vectors ei .i D 1; 2; : : :; lC1/
in a .l C 1/-dimensional space
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e1 D .1; 0; : : :; 0/ ; e2 D .0; 1; : : :; 0/ ; : : : . (2.16)

The root vectors in this space are

ei � ej .i; j D 1; 2; : : :; l C 1I i ¤ j /. (2.17)

Project these vectors into the hyperplane orthogonal to the vector e1C : : :CelC1.
2. Bl � so.2l C 1/. Introduce l mutually orthogonal unit vectors ei (i D 1; : : :; l/

in an l-dimensional space. The root vectors are

˙ ei , ˙ .ei ˙ ej /I i ¤ j (2.18)

3. Cl D sp.2l/. Same as Bl but with root vectors

˙ 2ei , ˙ .ei ˙ ej /I i ¤ j (2.19)

4. Dl D so.2l/. Same as Bl but with root vectors

˙ .ei ˙ ej /I i ¤ j (2.20)

Example 3. Root vector diagram of A1 � su.2/

There are two mutually orthogonal vectors in the l C 1 space

e1 D .1; 0/ , e2 D .0; 1/: (2.21)

The root vectors are

˙ .e1 � e2/ (2.22)

with coordinates .1;�1/; .�1; 1/. There are two roots plus one null root for a total
of 3 roots. The root vector diagram is shown in Fig. 2.9. This figure is the same as
Fig. 2.4 rotated by 45ı.

Example 4. Root vector diagram of B2 � so.5/

Fig. 2.9 Root vector diagram of su.2/
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For B2, there are two orthogonal unit vectors

e1 D .1; 0/, e2 D .0; 1/: (2.23)

The root vector are

˙ e1, ˙ e2, ˙ e1 ˙ e2: (2.24)

The coordinates of the end points are .˙1; 0/ ; .0;˙1/ ; .1;˙1/ ; .�1;˙1/. There
are 8 roots plus two null roots for a total of 10 roots. The root vector diagram is
shown in Fig. 2.6.

2.7 Rules for Constructing Root Vector Diagrams
of Exceptional Lie Algebras

Rules for constructing the root vector diagrams of exceptional Lie algebras are
rather complicated (Humphreys 1972).

1. G2. Add to the 6 non-null roots of A2 � su.3/

ei � ej .i; j D 1; 2; 3I i ¤ j / (2.25)

the 6 root vectors

˙ �
2ei � ej � ek

�
.i; j; k D 1; 2; 3I i ¤ j ¤ k/: (2.26)

These 12 roots plus the 2 null roots give the 14 roots of G2.
2. F4. Add to the 32 non-null roots of B4 � so.9/

˙ ei , ˙ .ei ˙ ej /I i ¤ j .i; j D 1; 2; 3; 4/ (2.27)

the 16 root vectors

1

2
.˙e1;˙e2 ˙ e3 ˙ e4/ . (2.28)

These 48 roots plus the 4 null roots give the 52 roots of F4.
3. E6;E7;E8. Rules for constructing the root systems of these algebras are very

complicated and will not be given here. For E8 they are given in Humphreys
(1972), p.65. Those of E6 and E7 can be obtained from those of E8 by inclusion
of the Dynkin diagram of E6 into E7 and of E7 into E8.
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2.8 Dynkin Diagrams of Classical Lie Algebras

The Dynkin diagrams of all classical Lie algebras can be obtained from the rules of
the previous Sects. 2.4 and 2.6 and are given in Fig. 2.10. In this figure, the simple
roots are denoted by ˛1; ˛2; : : :; ˛l .

2.9 Dynkin Diagrams of Exceptional Lie Algebras

The Dynkin diagrams of exceptional Lie algebras are given in Fig. 2.11.

2.10 Cartan Matrices

Another way of condensing the information on a given Lie algebra is by constructing
Cartan matrices. Let ˘ � .˛1; : : :; ˛l / be a system of simple roots. The matrices

Aij D 2
�
˛i ; ˛j

�

.˛i ; ˛i /
(2.29)

are called Cartan matrices. The diagonal elements are Aii D 2. The off-diagonal
elements can be obtained from

1 2 a

aaa

a a

a

a

aa a

a a a

a

2

1

D

4
so 2

1 2 1C

3
sp 2

1 2B

2
so 2 1

1 2A

1
su 1

Fig. 2.10 Dynkin diagrams of classical Lie algebras
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a1 a2 a3

a 8

a4 a5 a6 a7

a 1 a2 a3

a 7

a4 a5 a6

a1 a2 a 3

a 6

a4 a5

a 1 a 2 a 3 a 4

a 1 a 2

E8

E7

E6

F4

G2

Fig. 2.11 Dynkin diagrams of exceptional Lie algebras

Theorem 1. If ˛; ˇ 2 ˘ , then 2.˛;ˇ/

.˛;˛/
D �p, where p is a positive integer. Since

.ˇ;ˇ/

.˛;˛/
is given by (2.14), the off-diagonal elements are restricted to 0;�1;�2;�3.

2.11 Cartan Matrices of Classical Lie Algebras

The Cartan matrices of the classical Lie algebras constructed from the Dynkin
diagrams of Sect. 2.8 are given by

Al W

2 �1 0 : : : 0 0

�1 2 �1 : : : 0 0

0 �1 2 : : : 0 0

: : : : : : : : : : : : : : : : : :

0 0 0 : : : 2 �1
0 0 0 : : : �1 2

(2.30)
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Bl ; Cl W

2 �1 0 : : : 0 0

�1 2 �1 : : : 0 0

0 �1 2 : : : 0 0

: : : : : : : : : : : : : : : : : :

0 0 0 : : : 2 �2
0 0 0 : : : �1 2

(2.31)

Dl W

2 �1 0 : : : 0 0 0

�1 2 �1 : : : 0 0 0

0 �1 2 : : : 0 0 0

: : : : : : : : : : : : : : : : : : : : :

0 0 0 : : : 2 �1 �1
0 0 0 : : : �1 2 0

0 0 0 : : : �1 0 2

: (2.32)

Example 5. Cartan matrix of su.3/

For the algebra A2 � su.3/, the Cartan matrix is

su.3/ W 2 �1
�1 2

: (2.33)

2.12 Cartan Matrices of Exceptional Lie Algebras

We give here only the Cartan matrices of G2 and F4.

G2 W 2 �1
�3 2

(2.34)

F4 W
2 �1 0 0

�1 2 �2 0

0 �1 2 �1
0 0 �1 2

: (2.35)

Those of E6;E7 and E8 can be found in Humphreys (1972) p. 59.

2.13 Real Forms of Complex Semisimple Lie Algebras

In applications, one is often interested in real forms of complex semi-simple Lie
algebras. Commonly used real forms and their notation are given in Table 2.2.
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Table 2.2 Real forms of complex
semisimple Lie algebras

Cartan Real forms

Al su.n/

su.p; q/ (p C q D n)

sl.n; R/

su�.2n/

Bl so.n/ (n odd)

so.p; q/ (p C q D n)

Cl sp.n/ (n even)

sp.n; R/

sp.p; q/ (p C q D n)

Dl so.n/ (n even)

so.p; q/

so�.n/

Table 2.3 Isomorphisms
of complex semisimple Lie
algebra

A1 � B1 � C1

B2 � C2

D2 � A1 ˚ A1

A3 � D3:

2.14 Isomorphisms of Complex Semisimple Lie Algebras

Isomorphisms of complex Lie algebras of low rank are given in Table 2.3.

2.15 Isomorphisms of Real Lie Algebras

Isomorphisms of real Lie algebras of low rank are given in Table 2.4.

2.16 Enveloping Algebra

Starting with a Lie algebra g 3 X�, one can form the algebra composed of all
products of elements

X�

X� X�

X� X�X�

: : : (2.36)
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Table 2.4 Isomorphisms of real Lie algebras

A1 � B1 � C1 su.2/ � so.3/ � sp.2/ � su?.2/

su.1; 1/ � so.2; 1/ � sp.2; R/ � sl.2; R/

B2 � C2 so.5/ � sp.4/

so.4; 1/ � sp.2; 2/

so.3; 2/ � sp.4; R/

D2 � A1 ˚A1 so.4/ � su.2/˚ su.2/ � so.3/˚ so.3/ � sp.2/˚ sp.2/

so?.4/ � su.2/˚ sl.2; R/

so.3; 1/ � sl.2; C /

so.2; 2/ � sl.2; R/˚ sl.2; R/

A3 � D3 su.4/ � so.6/

su.3; 1/ � so?.6/

su?.4/ � so.5; 1/

sl.4; R/ � so.3; 3/

su.2; 2/ � so.4; 2/

This algebra is called the enveloping algebra of g. The commutation relations of the
X�’s among themselves define the Lie algebra g. The commutation relations of the
enveloping algebra with the X�’s define a tensor algebra over g, T .g/.

2.17 Realizations of Lie Algebras

Lie algebras can be realized in various ways. Three of them have been widely used.
In these realizations, elements are written in double index notation, E˛ˇ .

(i) Differential realization
This is in terms of differential operators acting on functions f .x1; ::; xn/

E˛ˇ D x˛
@

@xˇ
. (2.37)

Commutation relations of the algebra can be obtained from the basic commu-
tation relations

	
@

@x˛
; xˇ



D ı˛ˇ (2.38)

Differential realizations will be discussed in Chap. 11.
(ii) Matrix realization

This is in terms of n � n matrices acting on column vectors

0

@
: : :

: : :

: : :

1

A
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E˛ˇ D

0

B
B
B
B
B
BB
@

j
j
j

� � � � 1 � �
j
j

1

C
C
C
C
C
CC
A

(2.39)

with unit entry on the ˇ-th column and the ˛-th row. Commutation relations
of the algebra are obtained from the basic commutation relations of matrices.
Matrix realizations will be discussed in Chap. 12.

(iii) Boson creation-annihilation operator realization (often called
Jordan-Schwinger realization)

This is in terms of bilinear products of n boson creation, b�˛ , and annihila-
tion, b˛, operators acting on a vacuum j0i,

E˛ˇ D b�˛bˇ: (2.40)

The commutation relations of the algebra can be obtained from those of the
creation and annihilation operators

h
b˛; b

�

ˇ

i
D ı˛ˇ , (2.41)

called Bose commutation relations. Realizations in terms of boson creation and
annihilation operators will be discussed in Chap. 9.

For all three realizations, the commutation relations of the elements of the algebra
E˛ˇ are

ŒE˛ˇ ; E�ı� D ıˇ�E˛ı � ı˛ıE�ˇ (2.42)

with ˛; ˇ D 1; : : :; n. They define the Lie algebra of u.n/. Realizations of other
algebras can be obtained by taking appropriate combinations of the elements E˛ˇ ,
since any Lie algebra is, by Ado’s theorem, a subalgebra of u.n/.

2.18 Other Realizations of Lie Algebras

In addition to the three realizations of the previous section, others are possible and
have been used for applications in physics. Two of these, particularly important in
the description of fermionic systems, are:

(iv) Grassmann differential realization
This realization is in terms of Grassmann variables, �i (i D 1; : : :; n),

and their derivatives, @
@�i

. Grassmann variables are anticommuting variables



36 2 Semisimple Lie Algebras

satisfying

�i�j C �j �i D 0; i; j D 1; : : :; n: (2.43)

The elements of the Lie algebra are the bilinear products

Eij D �i
@

@�j
: (2.44)

The commutation relations can be obtained from the basic commutation
relations

	
@

@�i
; �j




C
� @

@�i
�j C �j

@

@�i
D ıij: (2.45)

These realizations were first introduced by Martin in 1959 [I.L. Martin, Proc.
Roy. Soc. A251, 536 (1959)] and later developed by several authors. They will
not be discussed in these notes. A detailed account is given by Berezin (1987).

(v) Fermion creation-annihilation operators realization
This is in terms of bilinear products of n fermion creation, a�i , and

annihilation, ai , operators acting on a vacuum j 0i,

Eij D a
�
i aj ; (2.46)

where the creation and annihilation operators, a�i ; ai , satisfy

Œai ; a
�
j �C � aia

�
j C a

�
j ai D ıij; (2.47)

called Fermi commutation relations. These realizations will be discussed in
Chap. 10.

For both realizations (iv) and (v), the commutation relations of the elements of
the algebra Eij are

�
Eij; Ekm

� D ıjkEim � ıimEkj; (2.48)

with i; j D 1; : : :n. The commutation relations (2.48) are identical to those given
by (2.42). They define again the Lie algebra u.n/.



Chapter 3
Lie Groups

3.1 Groups of Transformations

A set of elements A;B;C; : : :, forms a groupG if it satisfies the following axioms:

Axiom 1. Among the elements there is an element I such that

AI D IA D A (3.1)

This property is called identity.

Axiom 2. The product AB gives another element C in the set

AB D C (3.2)

This property is called closure.

Axiom 3. There exists an element A�1 such that

A�1A D AA�1 D I (3.3)

This property is called inverse.

Axiom 4. The order of multiplication is immaterial

A.BC/ D .AB/C (3.4)

This property is called associativity.

Groups of transformations can be divided into discrete (finite and infinite) and
continuous (finite and infinite). For discrete groups the number of elements is called
the order of the group. For continuous groups, the number of parameters, to be

© Springer-Verlag Berlin Heidelberg 2015
F. Iachello, Lie Algebras and Applications, Lecture Notes in Physics 891,
DOI 10.1007/978-3-662-44494-8__3
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described in the following sections, is called the order of the group. Both discrete
and continuous groups are of importance in physics. Here we briefly describe
some continuous groups (Lie groups) and their association with Lie algebras.
A description of discrete groups is given by Hamermesh (1962).

The definition of groups of transformations given above is that used by physicists.
For a mathematical definition of Lie groups, see Varadarajan (1984).

3.2 Groups of Matrices

Among the groups of transformations, particularly important are groups of square
matrices

A D
0

@
	 	 	
	 	 	
	 	 	

1

A .n � n/: (3.5)

These matrices satisfy all the axioms of a group:

1. The identity I is the unit matrix

I D

0

BB
B
B
B
B
B
@

1 0

1

	
	
	

0 1

1

CC
C
C
C
C
C
A

(3.6)

2. Matrix multiplication gives closure.
3. If det j A j¤ 0 an inverse A�1 exists.
4. Matrix multiplication gives associativity.

Groups of matrices can be written in terms of all number fields, R;C;Q;O . In
these notes, we shall consider only groups of real and complex matrices. The matrix
elements of the matrixAwill be denoted byAik, with i D row index and k D column
index. We shall also introduce real and complex vectors in n dimensions. The
components of vectors will be denoted by xi and zi . Standard matrix notation will
be used in this chapter (no covariant or contravariant indices).

3.3 Properties of Matrices

We begin by recalling in Table 3.1 some basic properties of matrices.
In this table, At denotes the transpose matrix, A� the complex conjugate matrix,

and A� the hermitian conjugate matrix, A� D .At /�.
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Table 3.1 Matrix properties

A D At Symmetric

A D �At Skew symmetric

AtA D I Orthogonal

A D A� Real

A D �A� Imaginary

A D A� Hermitian

A D �A� Skew hermitian

A�A D I Unitary

A group of transformations transforms the real or complex vector x �
.x1; x2; : : :; xn/ or z � .z1; z2; : : :; zn/ into the real or complex vector x0 or z0.
We shall consider both real and complex transformations

x0 D Ax ; x0
i D

X

k

Aikxk

z0 D Bz ; z0
i D

X

k

Bikzk (3.7)

where Aik and Bik are the matrix elements of the real and complex n� n matrices A
and B .

3.4 Continuous Matrix Groups

1. General linear groups
These are the most general linear transformations. They are denoted by

GL.n; C / r D 2n2

GL.n;R/ r D n2: (3.8)

The number of real parameters that characterize the transformation is given next
to its name. The number field R;C is also explicitly shown.

2. Special linear groups
If, on the general linear transformation, the condition

det j A jD C1 (3.9)

is imposed, the group is called special linear group, denoted by

SL.n; C / r D 2.n2 � 1/

SL.n;R/ r D n2 � 1: (3.10)
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3. Unitary groups
Imposing the condition

A�A D I (3.11)

one obtains the unitary groups

U.n; C / � U.n/ r D n2

U.p; qIC/ � U.p; q/ r D n2: (3.12)

They leave invariant the quantities

U.n/ W
nX

iD1
zi z

�
i

U.p; q/ W �
pX

iD1
zi z

�
i C

pCqX

jDpC1
zj z�

j (3.13)

Unitary groups are over complex numbers C . It has become common practice to
delete the number field from the group notation, that is to use U.n/ instead of
U.n; C /.

4. Special unitary groups
The combination of the special condition with the unitary condition

A�A D I ; det j A jD C1 (3.14)

gives the special unitary groups

SU.n; C / � SU.n/ r D n2 � 1

SU.p; qIC/ � SU.p; q/ r D n2 � 1: (3.15)

Again, the number field C is often deleted. For special unitary groups, there is
an (anomalous) case, denoted by SU�.2n/,

SU�.2n/ r D .2n/2 � 1 (3.16)

defined by matrices

A D
�
A1 A2

�A�
2 A

�
1

�

A1;A2 D n � n complex matrices with Tr A1 C Tr A�
1 D 0: (3.17)
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5. Orthogonal groups
These groups are defined by the orthogonality condition

AtA D I: (3.18)

In applications in physics, they are usually over the real number field. The
number field is often deleted in the notation and O.n;R/ is often denoted by
O.n/

O.n; C / r D n.n � 1/

O.n;R/ � O.n/ r D 1

2
n.n � 1/: (3.19)

They leave invariant the quantities

O.n;C / W
nP

iD1
z2i

O.n;R/ � O.n/ W
nP

iD1
x2i (3.20)

In addition, one has the groups

O.p; qIC/ r D n.n � 1/

O.p; qIR/ r D 1

2
n.n � 1/ (3.21)

which leave invariant the quantities

O.p; qIC/ W �
pP

iD1
z2i C

pCqP
jDpC1

z2j

O.p; qIR/ � O.p; q/ W �
pP

iD1
x2i C

pCqP
jDpC1

x2j (3.22)

6. Special orthogonal groups
The combination of the special with the orthogonal condition

AtA D I det j A jD C1 (3.23)

gives the special orthogonal groups
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SO.n; C / r D n.n � 1/

SO.n;R/ r D 1

2
n.n � 1/

SO.p; qIC/ r D n.n � 1/

SO.p; qIR/ r D 1

2
n.n � 1/: (3.24)

Also here there is an (anomalous) case, called SO�.2n/, described by matrices

A D
�
A1 A2

�A�
2 A

�
1

�

A1;A2 D n � n complex matrices with A1 D �At1 and A2 D A
�
2: (3.25)

Real orthogonal groups are used both in quantum and in classical mechanics.
7. Symplectic groups

To define these groups, the vectors x and y are divided into two pieces, x D
.x1; : : :; xnI x0

1; : : :; x
0
n/; y D .y1; : : :ynIy0

1; : : :; y
0
n/. Symplectic groups

Sp.2n; C / r D 2n.2nC 1/

Sp.2n;R/ r D 1

2
2n.2nC 1/ (3.26)

are defined as those groups that leave invariant the quantity

nX

iD1

�
xiy

0
i � yix

0
i

�
(3.27)

where the vectors can be either real or complex. If the unitary condition is
imposed

A�A D I (3.28)

the group is called unitary symplectic

USp.2n; C / � Sp.2n/ r D 1

2
2n.2nC 1/ (3.29)

and is often denoted by Sp.2n/.

Both real and complex symplectic groups are used in quantum mechanics, while
real symplectic groups are used in classical mechanics (canonical transformations
and Hamilton’s equations).
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3.5 Examples of Groups of Transformations

3.5.1 The Rotation Group in Two Dimensions, SO.2/

As a first example we consider the rotation group in two dimensions SO.2/ �
SO.2;R/. Under a general linear real transformation the two coordinates x; y (used
here to conform with usual physics notation) transform as

x0 D a11 x C a12 y

y0 D a21 x C a22 y (3.30)

The corresponding group, GL.2;R/, is a four parameter group. The invariance of
x2 C y2

a211 x
2 C a212 y

2 C 2 a11a12 xy C a221x
2 C a221y

2 C 2 a21a22 xy D x2 C y2 (3.31)

gives three conditions

a211 C a221 D 1

2a11a12 C 2a21a22 D 0

a222 C a212 D 1: (3.32)

This leaves only one parameter.

Example 1. The group SO(2) is a one parameter group

The parameter can be chosen as the angle of rotation, ',

x0 D .cos'/ x � .sin'/ y

y0 D .sin '/ x C .cos'/ y (3.33)

as shown in Fig. 3.1.

Fig. 3.1 The angle ' that parametrizes SO.2/
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3.5.2 The Lorentz Group in One Plus One Dimension,
SO.1; 1/

A group closely related to the rotation group is the Lorentz group SO.1; 1/ �
SO.1; 1IR/. The general linear real transformation in space-time, x; t can be written

x0 D a11x C a12t

t 0 D a21x C a22t: (3.34)

Imposing the condition x2 � t2 Dinvariant, leaves a one parameter group.

Example 2. The group SO(1,1) is a one parameter group

A convenient parametrization is in term of the boost, # .

x0 D .cosh#/x C .sinh#/t

t 0 D .sinh#/x C .cosh#/t: (3.35)

By comparing with the previous subsection, one can see that the invariant forms are
different (Fig. 3.2).

The group SO.2/ which leaves invariant the form x2 C y2 is said to be
compact, while the group SO.1; 1/ which leaves invariant x2 � t2 is said to be non-
compact. The notation is such that the number of plus or minus signs is indicated in
SO.p; q/.

SO(2)

y

SO(1,1)

tba

Fig. 3.2 Invariant forms of a SO.2/ and b SO.1; 1/
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3.5.3 The Rotation Group in Three Dimensions, SO.3/

As another example consider the rotation group in three dimensions SO.3/ �
SO.3;R/. Under a general linear transformation, GL.3;R/, the coordinates x; y; z
transform as

x0 D a11 x C a12 y C a13 z

y0 D a21 x C a22 y C a23 z

z0 D a31 x C a32 y C a33 z (3.36)

This is a nine parameter group. Orthogonality

x0 2 C y0 2 C z02 D x2 C y2 C z2 (3.37)

gives six conditions. We thus have a three parameter group.

Example 3. The group SO(3) is a three parameter group

A convenient parametrization is in terms of Euler angles, '; #;  ,

0

@
cos' cos# cos � sin ' sin � cos' cos# sin � sin ' cos cos' sin#
sin ' cos# cos C cos' sin � sin' cos# sin C cos' cos � sin ' sin#

� sin# cos sin# sin cos#

1

A

(3.38)

as shown in Fig. 3.3. The rotation matrices (3.38) are usually denoted byR.'; #;  /.

Fig. 3.3 The Euler angles ', # ,  that parametrize SO.3/
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3.5.4 The Special Unitary Group in Two Dimensions, SU.2/

This group is denoted by SU.2/ � SU.2; C /. Under a general linear complex
transformation, GL.2; C /, the complex quantities, u; v, called a spinor, transform as

u0 D a11 u C a12 v

v0 D a21 u C a22 v: (3.39)

This is a eight parameter group. Call the matrix of the transformationA

A D
�
a11 a12
a21 a22

�
A� D

�
a�
11 a

�
21

a�
12 a

�
22

�
(3.40)

Unitarity, A�A D 1, gives four conditions

a�
11 a11 C a�

21 a21 D 1

a�
11 a12 C a�

21 a22 D 0

a�
12 a11 C a�

22 a21 D 0

a�
12 a12 C a�

22 a22 D 1 (3.41)

The corresponding group, U.2/, is a four parameter group. If one imposes a further
condition det j A jD C1, that is

a11 a22 � a12 a21 D 1 (3.42)

one obtains the three parameter group SU.2/.

Example 4. The group SU(2) is a three parameter group

This group can be parametrized as

u0 D a11 u C a12 v

v0 D �a�
12 u C a�

11 v (3.43)

with

a11 a
�
11 C a12 a

�
12 D 1: (3.44)
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3.5.5 Relation Between SO.3/ and SU.2/

Both SO.3/ and SU.2/ are three parameter groups. It is of importance to find their
relationship. Consider the following combination of the complex spinor u; v

x1 D u2 I x2 D uv I x3 D v2: (3.45)

These combinations transform as

x0
1 D u02 D a211 x1 C 2a11 a12 x2 C a212x3
x0
2 D u0v0 D �a11 a�

12 x1 C .a11 a
�
11 � a12 a

�
12/ x2 C a�

11 a12 x3
x0
3 D v02 D a�2

12 x1 � 2a�
11 a

�
12 x2 C a�2

11 x3

(3.46)

By introducing the coordinates x; y; z

x D .x1 � x3/=2 I y D .x1 C x3/=2i I z D x2 (3.47)

one can see that they transform as

x0 D 1
2
.a211 � a�2

12 � a212 C a�2
11 /x C i

2
.a211 � a�2

12 C a212 � a�2
11 /y

C.a11a12 C a�
11a

�
12/z

y0 D � i
2
.a211 � a�2

12 � a212 C a�2
11 /x C 1

2
.a211 � a�2

12 C a212 C a�2
11 /y

�i .a11a12 � a�
11a

�
12/z

z0 D � .a�
11a12 C a11 a

�
12/x C i .a�

11 a12 � a11a�
12/y

C.a11 a�
11 � a12 a�

12/z

(3.48)

This is a real orthogonal transformation in three dimensions, satisfying

x02 C y02 C z02 D x2 C y2 C z2: (3.49)

Thus SU.2/ and SO.3/ are related by a change of variables. In order to elucidate
the correspondence between SU.2/ and SO.3/, we consider a rotation of an angle ˛
around the z-axis. By inserting the values a11 D ei˛=2; a12 D 0 in the appropriate
formulas, we see that this rotation is characterized by matrices

SU.2/ SO.3/

�
ei˛=2 0

0 e�i˛=2
�
0

@
cos˛ � sin˛ 0
sin˛ cos˛ 0

0 0 1

1

A
(3.50)

A generic rotation, by angles ˛; ˇ; � is instead characterized by matrices
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SU.2/ SO.3/

 
cos ˇ

2
e
i
2 .˛C�/ sin ˇ

2
e� i

2 .˛��/
� sin ˇ

2
e
i
2 .˛��/ cos ˇ

2
e� i

2 .˛C�/

!

R.˛; ˇ; �/

(3.51)

where R.˛; ˇ; �/ is given in (3.38). For no rotation, R.0; 0; 0/; the correspon-
dence is

SU.2/ SO.3/

�
1 0

0 1

�
0

@
1 0 0

0 1 0

0 0 1

1

A
(3.52)

while for rotation of 2� , R.2�; 0; 0/, the correspondence is

SU.2/ SO.3/

��1 0

0 �1
�
0

@
1 0 0

0 1 0

0 0 1

1

A
(3.53)

One can see that there is a two-to-one correspondence, called a homomorphic
mapping of SU.2/ into SO.3/, denoted by SU.2/ � SO.3/. One says that SU.2/
is the universal covering group of SO.3/.

3.6 Other Important Groups of Transformations

An important class of transformations is formed by the combination of the transla-
tion group with the general linear group and its subgroups. These groups are still
Lie groups but the associated Lie algebras are non-semisimple.

3.6.1 Translation Group, T.n/

Translations in n-dimensions form a group. Under a translation a, the new coordi-
nates are

x0 D x C aI x0
i D xi C ai .i D 1; : : :; n/: (3.54)

The translation group is a n parameter group.
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3.6.2 Affine Group, A.n/

General linear transformations with det jAj ¤ 0 plus translations form a group,
called the affine group, A.n/, with

x0 D Ax C aI x0
i D

X

k

Aikxk C ai .i D 1; : : :; n/: (3.55)

This group is the semidirect product of the general linear group and the translation
group

A.n/ D T .n/˝s GL.n/: (3.56)

The number of parameters of A.n/ for real transformations is n2 C n.
Matrix representations of the affine group can be constructed in terms of

.nC 1/ � .nC 1/ matrices

�
A a
0 1

�
: (3.57)

3.6.3 Euclidean Group, E.n/

Rotations plus translations in an n-dimensional space form a group, called the
Euclidean group,E.n/. A vector x transforms under E.n/ as

x0 D Rx C aI x0
i D

X

k

Rikxk C ai ; (3.58)

where Rik is the rotation matrix and ai are the components of the translation vector.
The Euclidean group is the semi-direct product of SO.n/ and T .n/

E.n/ D T .n/˝s SO.n/. (3.59)

A case of particular interest is

E.3/ D T .3/˝s SO.3/: (3.60)

The Lie algebra e.n/ associated with E.n/ are the semidirect sums

e.n/ D t.n/˚s so.n/: (3.61)

The algebra e.2/ is given as an example in (1.37).
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Since E.n/ is a subgroup of A.n/, matrix representations of E.n/ can be
constructed as in (3.57). The number of parameters of E.n/ is n.n�1/

2
C n.

3.6.4 Poincare’ Group, P.n/

Lorentz transformations plus translations form a group, called the Poincare’ group,
P.n/. A vector x0 transforms under P.n/ as

x0 D Lx C aI x	 D
X

�

L�	x� C a	, (3.62)

whereL�	 are Lorentz transformations and a	 are the components of the translation.
This group is the semidirect product of SO.p; q/ and T .p; q/, with p C q D n,

P.n/ D T .p; q/˝s SO.p; q/; p C q D n: (3.63)

A case of particular interest is

P.4/ D T .3; 1/˝s SO.3; 1/: (3.64)

This group is also denoted by ISO.3; 1/ � P.4/ or the inhomogeneous Lorentz
group.

From Poincare’ transformations, by the process of contraction discussed in
Sect. 1.17, one can obtain Galilean transformations

x0 D Rx C vt C aI x0
i D

X

k

Rikxk C vi t C ai ; (3.65)

where vi are the components of the velocity vector v and ai the components of the
translation vector a.

Matrix representations of P.n/ can also be constructed as in (3.57).
Another important class of transformations is formed by the combination of

dilatations and affine transformations.

3.6.5 Dilatation Group, D.1/

Scale transformations form a one parameter group, called the dilatation group,

D.1/ W x0	 D �x	: (3.66)
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3.6.6 Special Conformal Group, C.n/

The set of non-linear transformations

x0	 D �
x	 C c	x2

�
=�.x/

�.x/ D 1C 2c�x� C c2x2; (3.67)

form a group, called the special conformal group, C.n/. In four dimensions, the
group C.4/ has four parameters, c	.	 D 0; 1; 2; 3/.

3.6.7 General Conformal Group, GC.n/

The set of Lorentz transformations plus translations plus dilatations plus special
conformal transformations form a group, the General Conformal Group, GC.n/,
or simply the Conformal Group. In four dimensions, the number of parameters of
GC.4/ is: 10 for the Poincare’ group ISO.3; 1/ � P.4/, 1 for the dilatation, D.1/,
and 4 for the special conformal transformations, C.4/, for a total of 15.

The group GC.4/ is isomorphic to SO.4; 2/. It is possible to introduce a
six-dimensional space and realize the conformal group linearly in this space.
A differential realization of the elements of the Lie algebra so.4; 2/ associated with
the Lie group SO.4; 2/ is

M	� D x	@� � x�@	 SO.3; 1/

P	 D @	 T .3; 1/

K	 D 2x	x
�@� � x2@	 C.4/

D D x�@� D.1/; (3.68)

with 	; � D 0; 1; 2; 3. Conformal transformations can be written as linear
transformations in a six-dimensional space with coordinates �	 D kx	, k, � D kx2.
Dilatations and special conformal transformations acting in this space are

D.1/ W �0	 D �	; k0 D ��1k; �0 D ��

C.4/ W �0	 D �	 C c	�; k0 D �2c��� C k C c2�; �0 D �; (3.69)

while Poincare’ transformations act as in Sect. 3.6.4.



Chapter 4
Lie Algebras and Lie Groups

4.1 The Exponential Map

The relationship between Lie algebras and Lie groups is of great importance. Let
the Lie algebra be g and the corresponding Lie groupG. The relation is

Lie algebra g 3 Xi .i D 1; : : :; r/ (4.1)

Lie group G 3 exp

 
rX

iD1
˛iXi

!

(4.2)

where the ˛i ’s are the parameters of the group and the sum goes over the order of
the group. (The ˛i ’s here should not be confused with the ˛i ’s in Chap. 2 where they
denote the components of a root vector). This relationship is called an exponential
map and denoted by

g

# exp
G

(4.3)

Example 1. The Lie group SO(3) is

A.˛1; ˛2; ˛3/ D e˛1X1C˛2X2C˛3X3 (4.4)

4.2 Definition of Exp

The exponentiation is defined through a power series expansion. For rank one
algebras, with only one element X and one parameter ˛

© Springer-Verlag Berlin Heidelberg 2015
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e˛X D 1C ˛X C ˛2X2

2Š
C 	 	 	 D

1P
pD0

.˛X/p

pŠ
(4.5)

The infinitesimal group element is obtained by keeping only the linear term in the
expansion

e˛x !
˛!0

1C ˛X (4.6)

For algebras of larger rank, one needs to exponentiate non-commuting elements. It
is convenient to use matrices.

4.3 Matrix Exponentials

Let A be a n � n matrix. Then

eA D I C AC A2

2Š
C : : : (4.7)

Some properties of matrix exponentials are:

1. The exponential eA converges if the matrix elements j aij j have an upper bound,
that is the group is compact.

2. If A and B commute, then

eACB D eAeB: (4.8)

3. If B can be inverted, then

B eA B�1 D eBAB�1

(4.9)

4. If �1; �2; : : :; �n are eigenvalues of A, then

e�1 ; : : :; e�n (4.10)

are eigenvalues of eA.
5. The exponential series satisfies

eA
� D .eA/� .eA

t
/ D .eA/t

eA
� D .eA/� e�A D .eA/�1

(4.11)

6. The determinant of eA is etrA:

7. If A is skew symmetric, eA is orthogonal. If A is skew hermitian, eA is unitary.
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8. The following formula (Campbell–Hausdorff) applies

e�A B eA D B C 1

1Š
ŒB;A�C 1

2Š
Œ ŒB;A�; A�C : : : (4.12)

4.4 More on Exponential Maps

The exponential map produces a particular parametrization of the group, that
connected with the identity element.

Example 2. Lie group SO(3)

Denote by ˛1 the angle of rotation about x, ˛2 about y and ˛3 about z. The
rotation matrix A.˛1; ˛2; ˛3/ in terms of these angles is

0

BB
B
B
B
BB
B
B
@

cos˛2 cos˛3 � sin ˛1 sin ˛2 cos˛3 C cos˛1 sin˛3
� cos˛2 sin˛3 cos˛1 cos˛3 C sin ˛1 sin ˛2 sin˛3

� sin ˛2 � sin˛1 cos˛2

cos˛1 sin˛2 cos˛3 C sin ˛1 sin˛3
� cos˛1 sin˛2 sin ˛3 C sin˛1 cos˛2

cos˛1 cos˛2

1

CC
C
C
C
CC
C
C
A

; (4.13)

where �� � ˛1 � � , �� � ˛2 � � , ��
2

� ˛3 � �
2

. This matrix can be obtained
from the exponential map (4.4) with

X˛1 D
0

@
0 0 0

0 0 �1
0 1 0

1

A ; X˛2 D
0

@
0 0 1

0 0 0

�1 0 0

1

A ; X˛3 D
0

@
0 �1 0
1 0 0

0 0 0

1

A ; (4.14)

satisfying the commutation relations of the Lie algebra so.3/ (1.9)

�
X˛i ; X˛j

� D "ijkX˛k (4.15)

where "ijk is the antisymmetric rank-3 tensor. The elements of the Lie algebra
X˛i .i D 1; 2; 3/ are called generators of the group.

Physicists often use other parametrizations. For example, in the Euler angle
parametrization (3.38), an operator

R .'; #;  / D Rz0. /Ru.#/Rz.'/ D e�i Jz0 e�i#Jue�i'Jz ; (4.16)

is introduced, where the axes z0; u; z are shown in Fig. 3.3 (Messiah 1958). By a
series of transformationsR can be brought to the form
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R .'; #;  / D e�i'Jze�i#Jy e�i Jz ; (4.17)

where Jx; Jy; Jz satisfy the commutation relations (1.18)

�
Jx; Jy

� D iJz;
�
Jy; Jz

� D iJx; ŒJz; Jx� D iJy: (4.18)

Although this expression is useful in practical calculations, it is not an exponential
map, since it is not connected with the identity element, and therefore it is not a
parametrization of the group.

Example 3. Lie group SU(2)

The matrix parametrization A.˛1; ˛2; ˛3/ of SU.2/ in terms of the angles
˛1; ˛2; ˛3 is

�
.cos˛1 cos˛2 C i sin ˛1 sin ˛2/ei˛3 � cos˛1 sin ˛2 C i sin ˛1 cos˛2

cos˛1 sin ˛2 C i sin ˛1 cos˛2 .cos˛1 cos˛2 � i sin ˛1 sin ˛2/e�i˛3

�
;

(4.19)

where �� � ˛1 � � , �� � ˛2 � � , 0 � ˛3 � � . This matrix can be obtained
from the exponential map (4.4) with

X1 D
�
0 i

i 0

�
; X2 D

�
0 �1
1 0

�
; X3 D

�
i 0

0 �i
�
; (4.20)

satisfying the commutation relations of su.2/ � so.3/, (1.9) and (4.15).

4.5 Infinitesimal Transformations

Infinitesimal transformations can be simply obtained from the exponential map by
expanding the exponential and keeping only the first order terms.

Example 4. Infinitesimal SO.3/ rotation around z

This infinitesimal rotation is obtained from A.˛1; ˛2; ˛3/ of (4.13) by letting
˛1 D 0, ˛2 D 0, ˛3 D ". One obtains as " ! 0,

A.0; 0; "/ D
0

@
1 " 0

�" 1 0
0 0 1

1

A : (4.21)

By acting with A.0; 0; "/ on a vector with components x; y; z, one obtains

A.0; 0; "/

0

@
x

y

z

1

A D
0

@
x C "y

�"x C y

z

1

A : (4.22)



Chapter 5
Homogeneous and Symmetric Spaces (Coset
Spaces)

5.1 Definitions

Consider an algebra g with elements Xi.i D 1; : : :; r/, g 3 Xi , and its associated
groupG obtained from g by exponentiation (4.2),G 3 exp

�P
i ˛iXi

�
, where ˛i are

the parameters of the group. Consider a topological space � , with points denoted
by � . The group G transforms any point � of � into another point � 0. The groupG
is called a topological (left) transformation group on � if

Axiom 1. With each G˛ 2 G there is associated a homeomorphism � ! G� of �
into � (schematically shown in Fig. 5.1)

Axiom 2. The identity element I of G is the identity homeomorphism of �

Axiom 3. The mapping � ! G� of G � � into � is continuous

Axiom 4. .G1G2/ � D G1.G2�/ for G1;G2 2 G and � 2 �
It is said that G acts transitively on � if for every pair of points �1; �2 2 � there

exists an element G such that �2 D G�1, and thatG acts effectively on � if I is the
only element that leaves each � 2 � fixed. The space � is called a homogeneous
space.

A realization of homogeneous spaces is provided by the quotient spacesG=H . If
G is a connected Lie group and H a compact subgroup of G, G � H , the quotient
space G=H is called a globally symmetric Riemannian space (also called a coset
space).

© Springer-Verlag Berlin Heidelberg 2015
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γ
G

γ'

Fig. 5.1 Transformation of � into � 0 by G

Table 5.1 Irreducible globally symmetric Riemannian spaces whose transformation group is a
simple connected Lie group

Compact Non-compact Rank Dimension

SU.n/=SO.n/ SL.n; R/=SO.n/ n� 1 .n� 1/.nC 2/=2

SU.2n/=Sp.n/ SU�.2n/=Sp.n/ n� 1 .n� 1/.2nC 1/

SU.p C q/=S.U.p/ ˝ U.q// SU.p; q/=S.U.p/ ˝ U.q// min.p; q/ 2pq

SO.p C q/=SO.p/˝ SO.q/ SO.p; q/=SO.p/˝ SO.q/ min.p; q/ pq

SO.2n/=U.n/ SO�.2n/=U.n/ Œn=2� n.n� 1/

Sp.2n/=U.n/ Sp.2n; R/=U.n/ n n.nC 1/

Sp.p C q/=Sp.p/˝ Sp.q/ Sp.p; q/=Sp.p/˝ Sp.q/ min.p; q/ 4pq

5.2 Cartan Classification

Irreducible globally symmetric spaces were classified by Cartan (1926, 1927).
They are given in Table 5.1. Cartan also classified symmetric spaces associated
with the exceptional groups, not included in Table 5.1. This table gives only
irreducible globally symmetric Riemannian spaces of Type I and Type III in Cartan’s
classification. In addition, there are also two other classes (Type II and IV) not
reported here. Symmetric spaces G=H with non-compact stability groups have also
been classified. A complete list is given in Barut and Raçzka (1986).

5.3 How to Construct Coset Spaces

Given an algebra g and a subalgebra h of g, g � h, divide g into

g D h˚ p: (5.1)

The algebra h is called the stability algebra, g=h the factor algebra, and p the
remainder, not closed with respect to commutation. The number of elements of
p gives the topological dimension of the space, last column in Table 5.1, and the
dimension of the maximal abelian subalgebra of p gives the rank of the space.
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The decomposition (5.1) has a counterpart in the Lie group, called a coset
decomposition. Let G be the group associated with g, H the group associated with
h, and P D expp,

G D expg

H D exph (5.2)

P D expp:

Then

G D PH, G D HP (5.3)

are called the left and right coset decompositions respectively. The Reimannian
space G=H is the parameter space of the coset.

Riemannian spaces especially important in physics are given in Table 5.2.

Example 1. The Riemannian space

U.6/=U.5/˝ U.1/ (5.4)

has 10 variables (5 complex variables).

Example 2. The Riemannian space

SO.3/=SO.2/ (5.5)

has 2 real variables.

The spaces U.n/=U.n � 1/ ˝ U.1/ are useful when describing systems of
bosons. The spaces SO.n/=SO.n� 1/ are useful in quantum mechanics. An explicit
construction of symmetric Riemannian spaces is given in the following Chap. 13.

Two other important Riemannian spaces related to those of Table 5.2 are
U.n; 1/=U.n/˝U.1/ and SO.n; 1/=SO.n/. Their properties are listed in Table 5.3.

Table 5.2 Two important Riemannian spaces

Space Rank Dimension Variables

U.n/=U.n� 1/˝ U.1/ 1 2.n� 1/ .n� 1/-complex

SO.n/=SO.n� 1/ 1 .n� 1/ .n� 1/-real

Table 5.3 Two important Riemannian spaces of non-compact groups

Space Rank Dimension Variables

U.n; 1/=U.n/˝ U.1/ 1 2n n-complex

SO.n; 1/=SO.n/ 1 n n-real
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Example 3. The Riemannian space

U.5; 1/=U.5/˝ U.1/ (5.6)

has 10 variables (5 complex variables).

Example 4. The Riemannian space

SO.3; 1/=SO.3/ (5.7)

has 3 real variables.

The spaces SO.n; 1/=SO.n/ are particularly useful in relativistic quantum
mechanics. An explicit construction of symmetric Riemannian spaces associated
with the Lorentz groups SO.n; 1/ is given in Chap. 13.



Chapter 6
Irreducible Bases (Representations)

6.1 Definitions

An irreducible basis .IRB/ is the basis for the representations of the algebra, g, (and
the associated group, G), and the basis upon which the elements of the algebra,
X� 2 g, act. It will be denoted by B:

Also, if V is a linear vector space,

B W V ˚ .V ˚ V/˚ .V ˚ V ˚ V/˚ : : : (6.1)

The meaning of the term irreducible is that any element X� acting on B does not
lead out of B.

6.2 Abstract Characterization

Irreducible representations are characterized by a set of labels (often called quantum
numbers). For a semisimple Lie algebra g, the number of labels is the rank of the
algebra, l , which is also the number of Cartan commuting elements. The number of
labels and their notation in these lecture notes are shown in Table 6.1.

We shall consider here representations of the classical compact algebras, su.n/,
so.n/, sp.n/: There are two types of representations: tensor representations and
spinor representations.

6.3 Irreducible Tensors

6.3.1 Irreducible Tensors with Respect to GL.n/

In order to illustrate the notion of irreducible tensors we consider here two vectors
x � .x1; : : :; xn/ and y � .y1; : : :; yn/. Under GL.n/ they transform as

© Springer-Verlag Berlin Heidelberg 2015
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Table 6.1 Labels of irreducible representations

Name Number of labels Labels

u.n/ n Œ�1; �2; : : :; �n�

su.n/ n� 1 Œ�1; �2; : : :; �n�1�

so.n/ (n odd) � D .n� 1/=2 Œ	1; 	2; : : :; 	��

sp.n/ (n even) � D n=2 Œ	1; 	2; : : :; 	��

so.n/ (n even) � D n=2 Œ	1; 	2; : : :; 	��

G2 2 Œ�1; �2�

F4 4 Œ�1; �2; �3; �4�

E6 6 Œ�1; �2; �3; �4; �5; �6�

E7 7 Œ�1; �2; �3; �4; �5; �6; �7�

E8 8 Œ�1; �2; �3; �4; �5; �6; �7; �8�

x0
i D

X

k

aikxk ; y0
i D

X

k

aikyk ; .i; k D 1; : : :; n/: (6.2)

Consider now the Kronecker product of the two vectors, Fij D xiyj . This product
has n�n components and transforms as a second rank tensor with respect to GL.n/

F 0
ij D

X

k;l

aikajlFkl: (6.3)

Irreducible tensors with respect to GL.n/ are obtained by taking the symmetric and
antisymmetric parts

Sik D Ski D 1

2
.Fik C Fki/ ;

Aik D �Aki D 1

2
.Fik � Fki/ : (6.4)

The symmetric tensor has n.nC 1/=2 components, while the antisymmetric tensor
has n.n � 1/=2 components. In general, reducibility with respect to GL.n/ [and
gl.n/] means to classify tensors according to their symmetry under interchange of
indices. Young devised a procedure how to find the possible symmetry types of a
tensor of rank t in a n dimensional space.

(i) Partition t into n integers

t D �1 C : : :C �n (6.5)

with

�1 � �2 � : : : � �n � 0: (6.6)
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(ii) To each partition there correspond a graph (or tableau)

�1 � � : : : �
�2 � : : : �
: : : : : :

�n �

(6.7)

The tensor is symmetric under interchange of the rows and antisymmetric under
interchange of columns. The tableau is often denoted by Œ�1; : : :; �n� and zeros
are deleted.

Example 1. Consider a second rank tensor t D 2 in a three dimensional space,
n D 3.

The partitions are Œ2�; Œ1; 1� with Young diagrams

�� � Œ2� Symmetric tensor
�
� � Œ1; 1� Antisymmetric tensor

(6.8)

6.3.2 Construction of Irreducible Tensors with Respect
to GL.n/. Young Method

Young devised a method to construct explicitly irreducible tensors with respect to
GL.n/ starting from a generic tensor of rank r ,

Fi1i2:::ir . (6.9)

To this end, we introduce the permutation group of n objects, Sn, with nŠ elements
written as

�
1 2 : : : n

p1 p2 pn

�
: (6.10)

The simplest permutation is the transposition 1 ! 2; 2 ! 1, which we write as
.12/,

�
1 2

2 1

�
� .12/: (6.11)

Any permutation can be written as a product of transpositions. For example, the
cyclic permutation .123/ can be written as
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�
1 2 3

2 3 1

�
D
�
1 3

3 1

��
1 2

2 1

�
or .123/ D .13/.12/: (6.12)

A permutation is called even if it is the product of an even number of transpositions,
it is called odd if it is the product of an odd number of transpositions. We next
construct the quantities

P D
X

p

p, Q D
X

q

ıqq, (6.13)

where ıq is the parity of the permutation. P is called the “symmetrizer”, Q the
“antisymmetrizer”, and

Y D QP (6.14)

the Young operator.
To construct irreducible representations of GL.n/ with Young pattern

F
i1 i2 : : : i�1
i�1C1 : : : i�1C�2
: : : : : :

: : : ir

(6.15)

in terms of tensors of rank r , we start from the general r-th rank tensor Fi1i2:::ir
(6.9) and apply to it the Young operator Y D QP where P is the operator for
the horizontal permutations in the diagram and Q the operator for the vertical
permutations.

Example 2. Construct the tensor

F
i1 i2

i3 i4

(6.16)

from the general tensor Fi1i2i3i4 .

The symmetrizer and anitsymmetrizer are

P D Œe C .12/� Œe C .34/� ;

Q D Œe � .13/� Œe � .24/� : (6.17)

Applying them to F , we obtain

.PF/i1i2i3i4 D Fi1i2i3i4 C Fi2i1i3i4 C Fi1i2i4i3 C Fi2i1i4i3 ; (6.18)
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and

.QPF/i1i2i3i4 D Fi1i2i3i4 � Fi3i2i1i4 � Fi1i4i3i2 C Fi3i4i1i2

CFi2i1i3i4 � Fi2i3i1i4 � Fi4i1i3i2 C Fi4i3i1i2

CFi1i2i4i3 � Fi3i2i4i1 � Fi1i4i2i3 C Fi3i4i2i1

CFi2i1i4i3 � Fi2i3i4i1 � Fi4i1i2i3 C Fi4i3i2i1 : (6.19)

6.3.3 Irreducible Tensors with Respect to SU.n/

The irreducible representations of GL.n/ remain irreducible when we go to U.n/.
If we go to the unimodular groups SU.n/, the representations corresponding to the
patterns Œ�1; �2; : : :; �n� and Œ�1Cs; �2Cs; : : :; �nCs�; s D integer, are equivalent.
Thus, for SU.n/, we need to consider only patterns with one less row Œ�1 ��n; �2�
�n; : : :; �n�1 � �n� obtained from the pattern Œ�1; �2; : : :; �n� by subtracting the last
integer �n.

6.3.4 Irreducible Tensors with Respect to SO.n/

When we go from U.n/ to SO.n/, the representations in terms of tensors of a given
symmetry are no longer irreducible. There is a new operation, called contraction,
which commutes with orthogonal transformations. For SO.n/, the elements of the
transformation matrix aij satisfy

X

i

aijaik D ıjk: (6.20)

Contraction of a second rank tensor Fij gives

� D
X

i

Fii: (6.21)

In general, contraction of a rank-t tensor, gives a tensor of rank t � 2. Any tensor
can be decomposed into a traceless part, plus the rest.

Example 3. Decomposition of a rank-2 tensor in n D 3 dimensions
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GL.3/ SO.3/ dim L

Sik � 1
3
Siiıik D ˙ik 5 2

�
Sik

� Ÿ
Fik

1
3
Siiıik D �ik 1 0

Ÿ
Aik 3 1

(6.22)

The decomposition is thus

Fik D Aik C˙ik C �ik: (6.23)

The number of components of the tensors A;˙; � is shown in the column labeled
dim.

6.4 Tensor Representations of Classical Compact Algebras

6.4.1 Unitary Algebras u.n/

Irreducible representations of u.n/ are characterized by n integers, satisfying the
conditions

�1 � �2 � : : : � �n � 0: (6.24)

A graphical representation is provided by the Young tableau introduced previously
for U.n/

�1 � � : : : �
�2 � � : : : �
: : :

�n �

; (6.25)

also written as Œ�1; �2; : : :; �n�.

6.4.2 Special Unitary Algebras su.n/

Irreducible representations of su.n/ are characterized by n � 1 integers, satisfying
the relations
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�1 � �2 � : : : � �n�1 � 0: (6.26)

Because of the special condition, S , some representations become equivalent.
Equivalence relation 1 Start from the representations of u.n/ and subtract

the last integer Œ�1; �2; : : :; �n� � Œ�1 � �n; �2 � �n; : : :; �n�1 � �n; 0�.
This equivalence relation was already quoted in Sect. 6.3.
Equivalence relation 2 Start from the representations of u.n/ and use

Œ�1; �2; : : :; �n� � Œ�1 � �n; �1 � �n�1; : : :; �1 � �2; 0�.
This equivalence relation, when written at the level of su.n/ is

Œ�1; �2; : : :; �n� � Œ�1; �1 � �n�1; : : :; �1 � �2� and is sometimes called particle-
hole conjugation.

The equivalence relations 1 and 2 are used extensively.

Example 4. The first equivalence relation for su(3) gives

Œ4; 3; 1� � Œ3; 2�: (6.27)

Example 5. The second equivalence relation for su(3) gives

Œ3; 2� � Œ3; 1�: (6.28)

6.4.3 Orthogonal Algebras so.n/, n D Odd

The irreducible representations are labeled by � D .n � 1/=2 integers, satisfying

	1 � 	2 � : : : � 	� � 0: (6.29)

6.4.4 Orthogonal Algebras so.n/, n D Even

The irreducible representations are labeled by � D n=2 integers, satisfying

	1 � 	2 � : : : �j 	� j� 0: (6.30)

The last integer 	� can be here positive, negative or zero. If 	� ¤ 0, there are two
irreducible representations, called mirror conjugate, with 	� D ˙ j 	� j.

6.4.5 Symplectic Algebras sp.n/, n D Even

The irreducible representations are labeled by � D n=2 integers, satisfying
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	1 � 	2 � : : : � 	� � 0: (6.31)

Example 6. Unitary algebras

u.2/ Œ�1; �2� , �1 � �2 � 0

u.3/ Œ�1; �2; �3� , �1 � �2 � �3 � 0
(6.32)

Example 7. Special unitary algebras

su.2/ Œ�1 � �2� D Œf1� , f1 � 0

su.3/ Œ�1 � �3; �2 � �3� � Œf1; f2� , f1 � f2 � 0
(6.33)

Example 8. Orthogonal algebras

so.2/ Œ	1� � M; j 	1 j� 0

so.3/ Œ	1� � L; 	1 � 0

so.4/ Œ	1; 	2� � .!1; !2/ ; 	1 �j 	2 j� 0

so.5/ Œ	1; 	2� � .�1; �2/ ; 	1 � 	2 � 0

: (6.34)

Often, in applications, the abstract labels are replaced by letters related to their
physical interpretation, especially for orthogonal algebras and groups. In Example 8,
the letter M (z-component of the angular momentum) is used to denote the
representations of so.2/; and the letter L (angular momentum) to denote the
representations of so.3/.

6.5 Spinor Representations

As discussed in Chap. 3, the group SO.3/ is doubly connected. It turns out that
all orthogonal groups in odd number of dimensions SO.2� C 1/ are doubly
connected, while the orthogonal groups in even number of dimensions, SO.2�/,
are four-fold connected. As a result, orthogonal groups and algebras have
another type of representations, called spinor representations, characterized by
half-integer labels. (The additional two-fold connectedness of SO.2�/ produces
mirror conjugate representations already discussed in the previous section)
(Barut and Raçzka, 1986).

6.5.1 Orthogonal Algebras so.n/, n D Odd

Spinor representations of so.n/; n D odd, are characterized by � D .n � 1/=2

half-integers
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	1 � 	2 � : : : � 	� � 1

2
: (6.35)

6.5.2 Orthogonal Algebras so.n/, n D Even

Spinor representations of so.n/; n D odd, are characterized by � D n=2 half-
integers

	1 � 	2 �; : : : �j 	� j� 1

2
: (6.36)

As in the case of tensor representations, when n Deven, there are two irreducible
representations, called mirror conjugate, with 	� D ˙ j 	� j.

When spinor representations are included the algebras and groups are denoted
spin.n/ and Spin.n/ respectively.

Example 9. Spinor representations

spin.2/ Œ	1� � MJ D ˙ 1
2
;˙ 3

2
; : : :

spin.3/ Œ	1� � J D 1
2
; 3
2
; : : :

: (6.37)

6.6 Fundamental Representations

Any irreducible representation can be written as

Œ�� D
lP

iD1
fi Œ�

i �; (6.38)

where the fi ’s are non-negative integers and the Œ�i �’s are called fundamental rep-
resentations. Here Œ�� is a short-hand notation for the Young tableau characterizing
the representation and

�
�i
�

is a short-hand for the Young tableau characterizing
the fundamental representations. The index i runs from 1 to the values given in
Table 6.1 under “number of labels”. The fundamental representations of the classical
Lie algebras are listed below.

6.6.1 Unitary Algebras

There are n fundamental representations here
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u.n/
Œ1; 0; 0; : : :; 0�

Œ1; 1; 0; : : :; 0�

: : :

Œ1; 1; 1; : : :; 1�

: (6.39)

6.6.2 Special Unitary Algebras

There are n � 1 fundamental representations

su.n/
Œ1; 0; 0; : : :; 0�

Œ1; 1; 0; : : :; 0�

: : :

Œ1; 1; 1; : : :; 1�

: (6.40)

6.6.3 Orthogonal Algebras, n D Odd

There are � D .n � 1/=2 fundamental representations, one of which is a spinor
representation

spin.n/; n D odd
Œ1; 0; : : :; 0�

Œ1; 1; : : :; 0�

: : :

Œ1; 1; : : :; 1; 0��
1
2
; 1
2
; : : :; 1

2
; 1
2

�

: (6.41)

6.6.4 Orthogonal Algebras, n D Even

There are � D n=2 fundamental representations, two of which are spinor represen-
tations
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spin.n/; n D even
Œ1; 0; : : :; 0�

Œ1; 1; : : :; 0�

: : :

Œ1; 1; : : :1; 0; 0��
1
2
; 1
2
; : : :; 1

2
; 1
2

�
�
1
2
; 1
2
; : : :; 1

2
;� 1

2

�

: (6.42)

6.6.5 Symplectic Algebras

There are � D n=2 fundamental representations.

sp.n/; n D even
Œ1; 0; : : :; 0�

Œ1; 1; : : :; 0�

: : :

Œ1; 1; : : :; 1�

: (6.43)

6.7 Realization of Bases

Bases can be realized in various ways. Three of them have been widely used.

1. Homogeneous polynomials
The components of the basis are written as

x
�1
1 x

�2
2 : : : (6.44)

and the elements of the Lie algebra (2.37) act on them.
2. Column vectors

The components of the basis are written as column vectors

0

@
: : :

: : :

: : :

1

A : (6.45)

The elements of the Lie algebra (2.39) act on these column vectors.
3. Boson creation operators on a vacuum

The components of the basis are written as

b�˛b
�

˛0

: : : j0i : (6.46)
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The elements of the Lie algebra (2.40) act on these states.
In addition to these realizations, others have been used for applications in

physics. Two of these, important for applications to fermionic systems are:
4. Polynomials in Grassmann variables �i

These are used in connection with the realization (2.44) of the Lie algebra.
5. Fermion creation operators on a vacuum

The components of the basis are written as

a
�
i a

�

i 0 : : : j0i : (6.47)

The elements of the Lie algebra (2.46) act on this basis.

6.8 Chains of Algebras

For applications, it is necessary to characterize uniquely the basis, in other words to
provide a complete set of quantum numbers (labels). This is done by introducing a
chain of algebras,

ˇ
ˇ
ˇ̌
ˇ
ˇ

g � g0 � g00 � : : :

# # #
Œ�� Œ�0� Œ�00�

+

: (6.48)

Since in applications in quantum mechanics, the representations are interpreted
as quantum mechanical states, a notation often used is that introduced by Dirac,
called bra-ket notation. A ket is denoted by ji and a bra by hj.

A crucial problem of representation theory is to find the irreducible represen-
tations of an algebra g0 contained in a given representation of g (often called the
branching problem).

6.9 Canonical Chains

The branching problem was solved completely by Gel’fand and Cetlin in a series of
articles in the 1950s, for a particular chain of algebras, called the canonical chain of
unitary and orthogonal algebras (Gel’fand and Cetlin, 1950a,b).

6.9.1 Unitary Algebras

The canonical chain is



6.9 Canonical Chains 73

u.n/ � u.n� 1/ � u.n � 2/ � : : : � u.1/: (6.49)

The labels (quantum numbers) are conveniently arranged into a pattern called
Gel’fand pattern

�1;n �2;n �n�1;n �n;n

�1;n�1 : : : : : : �n�1;n�1
: : : : : :

�1;2 �2;2
�1;1

: (6.50)

The entries in this pattern are �i;j where i labels the entries in the Young tableau,
and j the algebra in the chain. For example, �n;n is the nth entry in the Young
tableau of u.n/.

The solution to the branching problem is that the labels must satisfy the
inequalities

�1; n � �1; n�1 � �2; n � : : : � �n;n � 0

: : :

�1;2 � �1;1 � �2;2: (6.51)

These inequalities hold for any two rows in (6.50) and are often called triangular
inequalities.

Example 10. Representations of u(4)

The complete basis is labelled by

�1;4 �2;4 �3;4 �4;4
�1;3 �2;3 �3;3

�1;2 �2;2

�1;1

(6.52)

In the applications discussed in Chap. 9, one needs the branching of the totally
symmetric representation ŒN � of u.4/ with ket j N4IN3IN2IN1i, N4 D N , and
pattern

N4 0 0 0

N3 0 0

N2 0

N1

: (6.53)

Use of Gel’fand inequalities gives N3 D N4;N4 � 1; : : :; 0IN2 D N3;N3 �
1; : : :; 0IN1 D N2;N2 � 1; : : :; 0.
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6.9.2 Orthogonal Algebras

The canonical chain is

so.n/ � so.n� 1/ � so.n � 2/ � : : : � so.2/: (6.54)

For n D 2k C 2 D even, the Gel’fand pattern is

	1;2kC1 	2;2kC1 : : : 	k;2kC1 	kC1;2kC1
	1;2k 	k;2k
	1;2k�1 	k;2k�1

: : : : : :

	1;4 	2;4
	1;3 	2;3

	1;2
	1;1

(6.55)

There is an alternation between even and odd algebras, ending with so.5/ � so.4/ �
so.3/ � so.2/: The triangular inequalities are:

	1; 2kC1 � 	1; 2k � 	2; 2kC1 � : : : � 	k; 2k �j 	kC1; 2kC1 j
	1; 2k � 	1; 2k�1 � 	2; 2k � : : : � 	k; 2k �j 	k; 2k�1 j

	1; 2k�1 � 	1; 2k�2 � : : : � 	k�1; 2k�2 �j 	k; 2k�1 j : (6.56)

For n D 2k C 1 D odd, the Gel’fand pattern is

	1;2k 	k;2k
	1;2k�1 	k;2k�1

	1;2k�2 	k�1;2k�2
: : : : : :

	1;4 	2;4
	1;3 	2;3

	1;2

	1;1

(6.57)

There is alternation between odd and even algebras, still ending with so.5/ �
so.4/ � so.3/ � so.2/ with inequalities

	1; 2k � 	1; 2k�1 � : : : � 	k; 2k �j 	k; 2k�1 j
	1; 2k�1 � 	1; 2k�2 � : : : � 	k�1; 2k�2 �j 	k; 2k�1 j : (6.58)
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Example 11. Branching of so(4)

For the ket

ˇ̌
ˇ
ˇ
ˇ
ˇ

so.4/ � so.3/ � so.2/
# # #

Œ	1; 	2� J M

+

(6.59)

the Gel’fand pattern is

	1 	2
J

M

(6.60)

with branching

	1 � J �j 	2 j ; CJ � M � �J: (6.61)

6.10 Isomorphisms of Spinor Algebras

Because of the isomorphisms discussed in Chap. 2, one has

spin.2/ � u.1/
spin.3/ � su.2/

spin.4/ � su.2/˚ su.2/
spin.5/ � sp.4/
spin.6/ � su.4/

(6.62)

After spin.6/, the spinor algebras are no longer isomorphic to other (non-
orthogonal) classical Lie algebras.

It is of interest to find the relation between the quantum numbers labeling the
representations of two isomorphic algebras.

Example 12. The case spin.3/ � su.2/

spin.3/ � su.2/
# #
J �

: (6.63)

The relation in this case is simply J D �
2
,
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su.2/ W
�

‚ …„ ƒ
� � : : : � � spin.3/ W J D �

2
(6.64)

Example 13. The case spin.6/ � su.4/

spin.6/ � su.4/
# #

Œ�1; �2; �3� Œ�1; �2; �3�

�1 � �2 �j �3 j� 0 �1 � �2 � �3 � 0

(6.65)

The relation in this case is

�1 D �1 C �2 ; �2 D �1 � �3 ; �3 D �2 � �3 : (6.66)

The correspondence between the fundamental representations is

spin.6/ su.4/

�
1
2
; 1
2
; 1
2

�
Œ1; 0; 0� �

�
1
2
; 1
2
;� 1

2

�
Œ1; 1; 1�

�
�
�

Œ1; 0; 0� Œ1; 1; 0�
�
�

: (6.67)

6.11 Nomenclature for u.n/

In physics textbooks, the representations of u.n/ are often referred according to the
particles they describe. The totally symmetric representations

N
‚ …„ ƒ
� � : : : � ŒN; 0; 0; : : :; 0� D ŒN;

�
0� � ŒN � (6.68)

describe bosons and are often referred to as bosonic. The notation
�
N; P0� is rarely

used. The totally antisymmetric representations
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�
�
: : :

�

Œ1; 1; : : :; 1� � Œ
�
1� (6.69)

describe fermions and are often referred to as fermionic. The representations with
mixed symmetry

� � 	 	 	 �
� 	 	 	 �
:::

�

(6.70)

describe particles with internal degrees of freedom.

6.12 Dimensions of the Representations

The dimensions of the representations are often used to check the branching rules.
A general formula was provided by Weyl and is called the Weyl formula.

6.12.1 Dimensions of the Representations of u.n/

The dimension of the representation Œ�� � Œ�1; �2; : : :; �n� of u.n/ is given by the
formula

dimŒ�� D
Y

i<j

.`i � `j /

.`0i � `0j /
`0j D n � j ; `j D �j C n� j; (6.71)

with i; j D 1; : : :; n.

Example 14. Dimensions of the representations of u(3)

For u.3/,

dimŒ�� D .`1 � `2/.`1 � `3/.`2 � `3/
.`01 � `02/.`

0
1 � `03/.`

0
2 � `03/

. (6.72)

From (6.71)

dim Œ�1; �2; �3� D 1

2
.�1 � �2 C 1/ .�1 � �3 C 2/ .�2 � �3 C 1/ : (6.73)
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For example, the dimension of the representation Œ2; 1; 0� is

dimŒ2; 1; 0� D 8. (6.74)

It has become customary in particle physics to denote the representation with its
dimension. This notation is ambiguous, as often there are different representations
with the same dimension. The Gel’fand patterns of the basis states of the represen-
tation Œ2; 1� of u.3/ and su.3/ are

ˇ
ˇ
ˇ
ˇ
ˇ̌

2 1 0

2 1

2

+ ˇˇ
ˇ
ˇ
ˇ̌

2 1 0

2 1

1

+

ˇ̌
ˇ
ˇ
ˇ
ˇ

2 1 0

2 0

2

+ ˇ̌
ˇ
ˇ
ˇ
ˇ

2 1 0

2 0

1

+ ˇ̌
ˇ
ˇ
ˇ
ˇ

2 1 0

2 0

0

+

ˇ
ˇ̌
ˇ
ˇ
ˇ

2 1 0

1 1

1

+

ˇ
ˇ
ˇ̌
ˇ
ˇ

2 1 0

1 0

1

+ ˇˇ
ˇ̌
ˇ
ˇ

2 1 0

1 0

0

+

(6.75)

In this application, the basis states correspond to particles. The eight states of the
representation 8 for baryons correspond to particles called p; n;˙C; ˙0;˙�; �0;

�0;��.

6.12.2 Dimensions of the Representations of su.n/

The dimensions of the representations of su.n/ can be obtained from those of
u.n/ by equivalences. Thus, for the representation Œ�1; �2; : : :; �n�1�, formula (6.71)
applies with �n D 0.

6.12.3 Dimensions of the Representations of An � su.n C 1/

An alternative formula for the dimensions of the representations of su.n/, which
makes the connection with those of the orthogonal and symplectic algebras given
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below clear, can be written for the Cartan algebras An � su.n C 1/. This formula
can be simply derived from (6.71).

One first constructs the quantities

gi D n � i C 1 ; mi D �i C gi .i D 1; : : :; n/: (6.76)

The dimensions of the representations of An are

dim Œ�� D
Y

i

�
mi

gi

�Y

i<j

�
mi �mj

gi � gj
�
: (6.77)

6.12.4 Dimensions of the Representations of Bn � so.2n C 1/

One constructs the quantities

gi D n � i C 1

2
; mi D 	i C gi .i D 1; : : :; n/: (6.78)

The dimensions of the representations of Bn are

dim Œ	� D
Y

i

�
mi

gi

�Y

i<j

�
mi �mj

gi � gj
�Y

i<j

�
mi Cmj

gi C gj

�
: (6.79)

Example 15. Dimensions of the representations of so.3/ and so.5/

The dimensions of the representations of so.3/ and so.5/ are given by

so.3/ dimŒ	1� D .2	1 C 1/

so.5/ dim Œ	1; 	2� D 1
6
.	1 � 	2 C 1/ .	1 C 	2 C 2/ .2	1 C 3/ .2	2 C 1/ :

(6.80)

6.12.5 Dimensions of the Representations of Cn � sp.2n/

Here

gi D n � i C 1 ; mi D 	i C gi .i D 1; : : :; n/: (6.81)

The dimensions of the representations of Cn are
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dim Œ	� D
Y

i

�
mi

gi

�Y

i<j

�
mi �mj

gi � gj
�Y

i<j

�
mi Cmj

gi C gj

�
: (6.82)

Example 16. Dimension of the representations of sp.4/

The dimensions of the representations of sp.4/ are given by

sp.4/ dim Œ	1; 	2� D 1
6
.	1 � 	2 C 1/ .	1 C 	2 C 3/ .	1 C 2/ .	2 C 1/ :

(6.83)

6.12.6 Dimensions of the Representations of Dn � so.2n/

Here

gi D n � 1 ; mi D 	i C gi .i D 1; : : :; n/: (6.84)

The dimensions of the representations of Dn are

dim Œ	� D
Y

i<j

�
mi �mj

gi � gj
�Y

i<j

�
mi Cmj

gi C gj

�
: (6.85)

Example 17. Dimension of the representations of so.4/

The dimensions of the representations of so.4/ are

so.4/ dim Œ	1; 	2� D .	1 � 	2 C 1/ .	1 C 	2 C 1/ : (6.86)

6.13 Action of the Elements of g on the Basis B

The action of the elements of g on the basis is of great interest in physics. We
consider here the case of u.n/. The elements of u.n/, when written in the double
index notation of Chap. 2, satisfy the commutation relations

ŒEij; Ekl� D ıjkEil � ıilEkj i; j; k; l D 1; : : :; n: (6.87)

Consider only Ek;k , Ek;k�1 and Ek�1;k; since the action of the others can be
obtained from the commutators of these. The action is

Ek;k j�i D .rk � rk�1/ j�i



6.13 Action of the Elements of g on the Basis B 81

Ek;k�1 j�i D
k�1X

jD1
a
j

k�1
ˇ
ˇ�0˛

Ek�1;k j�i D
k�1X

jD1
b
j

k�1
ˇ
ˇ�00˛ (6.88)

whereEk;k is called the diagonal element (or operator),Ek;k�1 the lowering element
(or operator),Ek�1;k the raising element (or operator). In this equation, j �i denotes
a generic Gel’fand pattern of u.n/. The coefficients rk are given by

r0 D 0 ; rk D
kX

jD1
�j;k ; k D 1; : : :; n; (6.89)

while the coefficients a and b are given by

a
j

k�1 D

2

66
6
6
6
4

�

kQ

iD1
.�i;k � �j;k�1 � i C j C 1/

k�2Q
iD1
.�i;k�2 � �j;k�1 � i C j /

k�1Q
i¤j
iD1
.�i;k�1 � �j;k�1 � i C j C 1/

k�1Q
i¤j
iD1
.�i;k�1 � �j;k�1 � i C j /

3

77
7
7
7
5

1=2

b
j

k�1 D

2

6
6
66
6
4

�

kQ

iD1
.�i;k � �j;k�1 � i C j /

k�2Q
iD1
.�i;k�2 � �j;k�1 � i C j � 1/

k�1Q
i¤j
iD1
.�i;k�1 � �j;k�1 � i C j /

k�1Q
i¤j
iD1
.�i;k�1 � �j;k�1 � i C j � 1/

3

7
7
77
7
5

1=2

(6.90)

The representation j �0 i is obtained from j � i by replacing �j; k�1 by �j; k�1 � 1.
(This is the reason why the operator Ek;k�1 is called lowering operator). j �00 i is
obtained from j � i by replacing �j; k�1 by �j; k�1 C 1. (Ek�1;k is called raising
operator).

These results were obtained by Baird and Biederharn in the 1960s (Baird and
Biedenharn, 1963).

Example 18. The algebra u(2)

The states are

ˇ
ˇ̌
ˇ
�1;2 �2;2

�1;1


(6.91)
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The algebra contains four elements E1;1; E1;2; E2;1; E2;2. The action of the
elements on the basis is

E1;1

ˇ
ˇ
ˇ
ˇ
�1;2 �2;2

�1;1


D �1;1

ˇ
ˇ
ˇ
ˇ
�1;2 �2;2

�1;1



E2;2

ˇ
ˇ
ˇ
ˇ
�1;2 �2;2

�1;1


D .�1;2 C �2;2 � �1;1/

ˇ
ˇ
ˇ
ˇ
�1;2 �2;2

�1;1



E2;1

ˇ
ˇ
ˇ̌�1;2 �2;2

�1;1


D Œ.�1;2 � �1;1 C 1/ .�1;1 � �2;2/�

1=2

ˇ
ˇ
ˇ̌�1;2 �2;2

�1;1 � 1



E1;2

ˇ̌
ˇ
ˇ
�1;2 �2;2

�1;1


D Œ.�1;1 � �1;2/ .�2;2 � �1;1 � 1/�1=2

ˇ̌
ˇ
ˇ
�1;2 �2;2

�1;1 C 1



(6.92)

Example 19. The algebra su(2)

In Gel’fand notation the basis states are

ˇ
ˇ
ˇ̌�1;2 D 2J �2;2 D 0

�1;1 D M C J


. (6.93)

In the usual notation in quantum mechanics the basis states are written as j J;M i.
The action of the elements on the basis is

E1;1 j J;M i D .M C J / j J;M i
E2;2 j J;M i D .�M C J / j J;M i. (6.94)

From these one obtains

1

2
.E1;1 � E2;2/ j J;M i D M j J;M i . (6.95)

The action of the raising and lowering operators is

E2;1 j J;M i D ŒJ.J C 1/�M.M � 1/�1=2 j J;M � 1 i
E1;2 j J;M i D ŒJ.J C 1/�M.M C 1/�1=2 j J;M C 1 i . (6.96)

In quantum mechanics textbooks, the elements of the algebra are denoted by
Jz; JC; J� with

Jz D 1

2
.E1;1 � E2;2/

J� D E1;2
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JC D E2;1 (6.97)

In this notation, the action of the elements of the algebra is

Jz jJ;M i D M jJ;M i
J� j J;M i D ŒJ.J C 1/�M.M � 1/�1=2 j J;M � 1 i
JC j J;M i D ŒJ.J C 1/�M.M C 1/�1=2 j J;M C 1 i : (6.98)

6.14 Tensor Products

With the representations Œ�1; �2; : : :; �n� one can form tensor products. The outer
product of two tensors is denoted by

Œ�0
1; �

0
2; : : :; �

0
n�˝ Œ�00

1 ; �
00
2 ; : : :; �

00
n� D

X
˚ Œ�1; �2; : : :; �n�: (6.99)

A crucial problem is to find what are the representations contained in the product.
For u.n/ and su.n/ the representations contained in the product can be simply
obtained using a set of rules, known also as Young calculus.

Rule 1. Product by a symmetric representation

Consider the product of a generic representation Œ�0
1; �

0
2; : : :; �

0
n� by a symmetric

representation Œ�00
1 ; 0; : : :; 0�, for example

� � ˝ � �
� (6.100)

Replace the second factor by a’s

� � ˝ a a

� (6.101)

Place the a’s in all possible ways but no two a’s in the same column

� � a a ˚ � � a ˚ � � a ˚ � �
� � a � � a

a a

(6.102)

Example 20. Product of fundamental representations

� ˝ � D � � ˚ �
� (6.103)
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When written in the notation (6.99)

Œ1�˝ Œ1� D Œ2�˚ Œ1; 1� : (6.104)

Rule 2. Product by a generic representation

Consider the product of a generic representation Œ�0
1; �

0
2; : : :; �

0
n� by a generic

representation Œ�00
1 ; �

00
2 ; : : :; �

00
n�, for example

� � ˝ � �
� � (6.105)

Replace the second factor by a’s, b’s, . . .

� � ˝ a a

� b
(6.106)

Place the a’s in all possible ways but no two a’s in the same column. Place the
b’s in all possible ways but no two b’s in the same column. The b’s must form with
the a’s an admissible sequence when read from right to left (i.e. in inverse order
: : :; c; b; a) in the first row, then in the second row, . . .

Definition 1. A sequence of letters a,b,c,. . . is admissible if at any point in the
sequence at least as many a’s have occurred as b’s, at least as many b’s have occurred
as c’s, etc.

Thus abcd and aabcb are admissible, while baa and acb are not. To implement
this ordering rule, start from the first row and take the boxes from right to left. Then,
run through the second row from right to left and so on. This ordered sequence
contains boxes with labels and empty boxes. The sequence of letters must be
admissible.

Example 21. Tensor product of representations of u.3/

Consider the product Œ2; 1�˝ Œ1; 1�. Using rule 2 we have

�� ˝ a D ��ab ˚ ��a ˚ ��a ˚ ��b
� b � �b � �a

 b 

˚ �� ˚ ��b ˚ ��
�a � �b
b a a

 

: (6.107)
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The admissible and not admissible * sequences are

b a � � �  not admissible
a � � b � admissible
a � � � b admissible
b � � a �  not admissible
� � a � b admissible
b � � � a  not admissible
� � b � a  not admissible

. (6.108)

(Not admissible sequences are identified in (6.107) by a star * placed under the
corresponding Young diagram). Therefore, deleting the not admissible * sequences,
one has

u.3/ W Œ2; 1�˝ Œ1; 1� D Œ3; 2�˚ Œ3; 1; 1�˚ Œ2; 2; 1� . (6.109)

Rule 3. For su(n) use equivalences when necessary

Example 22. Tensor product of representations of su.3/

From (6.109), one has

su.3/ W .2; 1/˝ .1; 1/ D .3; 2/˚ .2; 0/˚ .1; 1/: (6.110)

Parentheses ./ have been used to denote representations of su.3/ to distinguish them
from those of u.3/ denoted by brackets Œ�.

Rule 4. Check dimensions if needed

The dimensions of the representations in the product above are

su.3/ W 8˝ N3 D 15˚ 6˚ N3: (6.111)

Note that the two representations .1; 0/ and .1; 1/ have the same dimension, 3. A
bar is usually placed above the dimension of the second representation, when this
situation occurs.

Example 23. Another tensor product of representations of u.3/

Consider the product Œ2; 1�˝ Œ2; 1�. Using rule 2,
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� � ˝ a a D � � a a b ˚ � � a a ˚ � � a a ˚ � � a b

� b � � b � � a

 b 

˚ � � a ˚ � � a ˚ � � a b ˚ � � a

� a b � a � � b

b a a



˚ � � b ˚ � �
� a � a

a a b



: (6.112)

The not admissible * sequences are

b a a � � � 
b a � � a � 
b a � � � a 
b � � a � a 

; (6.113)

from which we obtain

u.3/ W Œ2; 1�˝ Œ2; 1� D Œ4; 2�˚ Œ4; 1; 1�˚ Œ3; 3�˚ Œ3; 2; 1�˚ Œ3; 2; 1�˚ Œ2; 2; 2�

su.3/ W .2; 1/˝ .2; 1/ D .4; 2/˚ .3; 0/˚ .3; 3/˚ .2; 1/˚ .2; 1/˚ .0; 0/

(6.114)

The dimensions of the representations in the product above are

su.3/ W 8˝ 8 D 27˚ 10˚ 10˚ 8˚ 8˚ 1: (6.115)

Multiplication rules for so.n/ and sp.n/ are rather complicated. Simple rules can
be obtained only by using the isomorphisms discussed in Chap. 2.

Example 24. Multiplication rules for so(3)

Consider, for example, the product .1/ ˝ .1/. Using the relation � D 2J , this
product can be converted to

su.2/ W Œ2�˝ Œ2�: (6.116)

This product can be performed using the rules 1 and 3,
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�� ˝ aa D � � a a ˚ � � a

a
˚ � �
a a

(6.117)

that is

Œ2�˝ Œ2� D Œ4�˚ Œ2�˚ Œ0� : (6.118)

This can be converted back to so.3/ using J D �=2, with result

.1/˝ .1/ D .2/˚ .1/˚ .0/: (6.119)

Example 25. Multiplication rules of so(6)

Consider as another example, the product .2; 0; 0/˝ .1; 0; 0/. Using the relations
�1 D �1 C �2; �2 D �1 � �3; �3 D �2 � �3 given in (6.66), this product can be
converted to

su.4/ W Œ2; 2; 0�˝ Œ1; 1; 0�: (6.120)

This product can be performed using the rules for su.4/

� � ˝ a D � � a ˚ � � a ˚ � �
� � b � � b � � � �

b a

b

; (6.121)

that is

Œ2; 2; 0�˝ Œ1; 1; 0� D Œ3; 3; 0�˚ Œ3; 2; 1�˚ Œ1; 0; 0� : (6.122)

This formula can now be converted back to so.6/ using �1 D �1C�2��3
2

; �2 D
�1��2C�3

2
; �3 D �1��2��3

2
, with result

.2; 0; 0/˝ .1; 0; 0/ D .3; 0; 0/˚ .2; 1; 0/˚ .1; 0; 0/. (6.123)

6.15 Non-canonical Chains

Gel’fand canonical chains of unitary and orthogonal algebras provide a complete
solution to the branching problem for these algebras. However, in most problems
in physics, one needs to consider non-canonical chains. For example, quite often
the rotation algebra so.3/ needs to be considered as a subalgebra of u.n/. Also, the
branching problem for symplectic algebras sp.n/, not addressed by Gel’fand and
Cetlin, needs be considered.
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Example 26. The chain u.6/ � so.6/ � so.5/ � so.3/ � so.2/

This chain has two non-canonical steps, u.6/ � so.6/ and so.5/ � so.3/ and
illustrates two of the most important cases often encountered: u.n/ � o.n/I u.n/ �
sp.n/I o.n/ � o.n � 2/I sp.n/ � sp.n � 2/. The other two cases, u.n/ � sp.n/

and sp.n/ � sp.n � 2/, are also encountered, especially the former, as discussed in
Chap. 10.

The decomposition of irreducible representations of g into representations of g0
for non-canonical chains

ˇ
ˇ
ˇ̌
ˇ
ˇ

g � g0
# #
Œ�� Œ	�

+

(6.124)

is one of the most difficult problems in group theory. A method often used is the so-
called building-up process. The decomposition is constructed by taking successive
products of the fundamental representations of g and g0. If one of the algebras is
su.n/, equivalences are used. The method is illustrated by considering a problem of
interest in nuclear physics.

Example 27. Decomposition of representations of u.3/ and su.3/ into representa-
tions of so.3/

In order to decompose representations of u.3/ and su.3/ into representations of
so.3/ it is convenient to consider the decomposition u.3/ � so.3/ and use equiva-
lence relations to obtain su.3/ � so.3/. It is also convenient, for clarity, to use Young
notation to label representations of u.3/ and su.3/ and angular momentum notation
to label representations of so.3/. In this notation, the fundamental representation Œ1�
of u.3/ has Young tableau �, while the fundamental representation .1/ of so.3/ has
L D 1. The representation � of u.3/ contains only the representation .1/ of so.3/,
as one can see by noting that dimŒ�� D 3 D dim.1/ and that there are no other
representations of so.3/ with dim D 3. (The dimensions of the representations play
an important role in the building-up process. The dimension of the representations
of u.3/ is given in (6.71), while that of so.3/ is given in (6.79).)The decomposition
of the fundamental representation of u.3/ into representations of so.3/ is thus

ˇ
ˇ
ˇ
ˇ
ˇ̌

u.3/ � so.3/
# #

Œ1� � � .1/

+

: (6.125)

Consider now the products of representations of u.3/ obtained by using the rules
of Sect. 6.14 and of so.3/ obtained either by using the rules of Sect. 6.14 or,
equivalently, by using the angular momentum rule

j L1 �L2 j� L �j L1 C L2 j (6.126)
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which results from the isomorphism so.3/ � su.2/, as described in Example 24.
The product of the fundamental representation Œ1� � � of u.3/ with itself, and of
the fundamental representation .1/ of so.3/ with itself gives

u.3/ W � ˝ � D �� ˚ �
�

so.3/ W .1/˝ .1/ D .0/˚ .1/˚ .2/: (6.127)

The representation Œ1; 1� of u.3/ contains only the representation .1/ of so.3/ as
one can see by noting that dim Œ1; 1� D 3 D dim.1/ and that there is no other
representation of so.3/ with dim D 3. Thus

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.3/ � so.3/
# #
Œ1; 1� .1/

+

: (6.128)

The remaining representations .0/˚ .2/ of so.3/ must belong to the representation
� � � Œ2� of u.3/. This is verified by a dimensional check, dimŒ2� D 6,
dim ..0/˚ .2// D 1C 5 D 6. Thus

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.3/ � so.3/
# #
Œ2� .0/˚ .2/

+

: (6.129)

When going from u.3/ to su.3/, by virtue of equivalence relation 2, we have Œ1; 1� �
Œ1�, again showing that the representation Œ1� of su.3/ contains only .1/ of so.3/.

Next, consider the products

u.3/ W �
� ˝ � D � �

� ˚
�
�
�

so.3/ W .1/˝ .1/ D .0/˚ .1/˚ .2/: (6.130)

The dimension of the representation Œ1; 1; 1� of u.3/ is 1 and therefore

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.3/ � so.3/
# #

Œ1; 1; 1� .0/

+

: (6.131)

Consequently Œ2; 1� must contain the remaining representations .1/˚ .2/
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ˇ
ˇ
ˇ̌
ˇ
ˇ

u.3/ � so.3/
# #

Œ2; 1� .1/˚ .2/

+

: (6.132)

The dimensional check is dimŒ2; 1� D 8, dim ..1/˚ .2// D 3C5 D 8. When going
from u.3/ to su.3/, use of the equivalence relation 1 gives

�
�
�

� Œ1; 1; 1� � Œ0� : (6.133)

A tedious but straightforward procedure, sometimes called plethism, gives then
Table 6.2. In this table, for clarity, both the representations of u.3/ and of su.3/
(with their equivalences) are given. Also the number t , the rank of the tensor in
(8.5), is given. This number is important in applications since it denotes the total
number of particles

Table 6.2 Decomposition of representations of u.3/
and su.3/ into representations of so.3/

t u.3/ su.3/ so.3/

0 Œ0� Œ0� 0

1 Œ1� Œ1� 1

2 Œ2� Œ2� 0; 2

Œ1; 1� Œ1; 1� � Œ1� 1

3 Œ3� Œ3� 1; 3

Œ2; 1� Œ2; 1� 1; 2

Œ1; 1; 1� Œ1; 1; 1� � Œ0� 0

4 Œ4� Œ4� 0; 2; 4

Œ3; 1� Œ3; 1� 1; 2; 3

Œ2; 2� Œ2; 2� � Œ2� 0; 2

Œ2; 1; 1� Œ2; 1; 1� � Œ1� 1

5 Œ5� Œ5� 1; 3; 5

Œ4; 1� Œ4; 1� 1; 2; 3; 4

Œ3; 2� Œ3; 2� � Œ3; 1� 1; 2; 3

Œ3; 1; 1� Œ3; 1; 1� � Œ2� 0; 2

Œ2; 2; 1� Œ2; 2; 1� � Œ1; 1� 1

6 Œ6� Œ6� 0; 2; 4; 6

Œ5; 1� Œ5; 1� 1; 2; 3; 4; 5

Œ4; 2� Œ4; 2� 0; 22; 3; 4

Œ4; 1; 1� Œ4; 1; 1� � Œ3� 1; 3

Œ3; 3� Œ3; 3� � Œ3� 1; 3

Œ3; 2; 1� Œ3; 2; 1� � Œ2; 1� 1; 2

Œ2; 2; 2� Œ2; 2; 2� � Œ0� 0
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t D �1 C : : :C �n: (6.134)

Consider now the representation Œ4; 2� of su.3/. From the table, one can see that
it contains two L D 2 representations of so.3/. Thus the decomposition is not
unique and one needs an additional quantum number to distinguish the two L D 2

representations. The identification and use of this quantum number (missing label)
is one of the most subtle points of representation theory. To find how many missing
labels there are in a given problem, go to the canonical chain (which has no missing
labels) and count the total number of labels.

Example 28. Missing labels for su(3)�so(3)

Consider the non-canonical chain

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

su.3/ � so.3/ � so.2/
# # #

Œ�1; �2� L M

+

(6.135)

and its associated canonical chain

ˇ
ˇ
ˇ
ˇ̌
ˇ

su.3/ � u.2/ � u.1/
# # #

Œ�1;3; �2;3; 0� Œ�1;2; �2;3� Œ�1;1�

+

: (6.136)

The non-canonical chain has four labels, while the canonical chain has five. There
is thus one missing label in the non-canonical chain.

Extensive tables for the non-canonical reductions

8
<

:

u.7/ � so.7/
u.5/ � so.5/
u.3/ � so.3/

8
<

:

u.8/ � sp.8/
u.6/ � sp.6/
u.4/ � sp.4/

�
u.6/ � so.6/
u.4/ � so.4/

(6.137)

exist (Hamermesh, 1962). Tables are also available for the reduction so.5/ � so.3/
Iachello and Arima (1987).

Although not of the type mentioned at the beginning of the section, it is
worth noting that tables of non-canonical reductions sp.8/ � spin.3/; sp.6/ �
spin.3/; sp.4/ � spin.3/ are also available (Flowers, 1952).



Chapter 7
Casimir Operators and Their Eigenvalues

7.1 Definitions

An operator which commutes with all the elements of a Lie algebra, g, is called an
invariant, or Casimir operator, C

ŒC;X�� D 0 for any X� 2 g . (7.1)

The operator is called of order p, if it is built from products of p elements

Cp D P

˛1;˛2;:::;˛p

f ˛1˛2:::˛pX˛1X˛2 : : :X˛p : (7.2)

It lies in the enveloping algebra of g, T .g/.

7.2 Independent Casimir Operators

The number of independent Casimir operators, C , of a Lie algebra g, is equal to the
rank l of g, and hence equal to the number of labels that characterize the irreducible
representations of g. As mentioned in Chap. 1, if C is a Casimir operator, so is
aC, C2,. . .

7.2.1 Casimir Operators of u.n/

The algebra of u.n/ has n independent Casimir operators of order 1; 2; : : :; n

C1; C2; : : :; Cn: (7.3)

© Springer-Verlag Berlin Heidelberg 2015
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A construction of these operators was given in Chap. 1 in terms of the structure
constants c�˛ˇ . For the algebra u.n/, if the elements are denoted by Eij.i; j D
1; : : : ; n/, that is if the algebra is realized as in Chap. 2, Sect. 2.17, the Casimir
operators of order p can be written as

Cp D Ei1i2Ei2i3 : : :Eip�1ipEipi1 p D 1; 2; : : :; n (7.4)

(summation over repeated indices). In particular

C1 D Ei1i1 ; (7.5)

or, displaying explicitly the summation

C1 D
nX

iD1
Eii: (7.6)

Using the form (7.4), one can show that the Casimir operators so defined are
independent (Barut and Raçzka 1986).

7.2.2 Casimir Operators of su.n/

The independent Casimir operators of su.n/ are of order 2; 3; : : :; n

C2; C3; : : :; Cn (7.7)

that is the same as u.n/ but with C1 omitted. The elements of su.n/ are obtained
from those of u.n/ by keeping the off-diagonal elements the same, replacing the
diagonal ones with

QEii D Eii � 1

n

nX

jD1
Ejj: (7.8)

and deleting QEnn. The linear Casimir operator of su.n/ is

C1 D
nX

iD1
QEii D 0; (7.9)

and can thus be omitted.
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7.2.3 Casimir Operators of so.n/, n D Odd

The independent Casimir operators of so.n/; n Dodd are

C2; C4; C6; : : :; C2��2; C2� I � D n � 1
2

: (7.10)

These operators are all of even order.

7.2.4 Casimir Operators of so.n/, n D Even

The independent Casimir operators of so.n/; n Deven are

C2; C4; C6; : : :; C2��2; C 0
� I � D n

2
: (7.11)

The operators C are of even order, while C 0 is of even or odd order depending on
whether � is even or odd. Comparing with the previous case (7.10) one can see that
there is a peculiarity here, since the operator of order 2� is replaced by an operator
of order �. The operator C 0

� is needed to distinguish between the mirror conjugate
representations Œ�1; �2; : : :;C��� and Œ�1; �2; : : :; ����.
Example 1. Casimir operators of so.4/ and so.6/

The Casimir operators of so.4/ are of order

C2; C
0
2: (7.12)

The Casimir operators of so.6/ are of order

C2; C4; C
0
3: (7.13)

7.2.5 Casimir Operators of sp.n/, n D Even

The independent Casimir operators of sp.n/; n D even are

C2; C4; C6; : : :; C2��2; C2�I � D n

2
: (7.14)

These operators are all of even order.
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7.2.6 Casimir Operators of the Exceptional Algebras

The independent Casimir operators of the exceptional algebras are of order

G2 C2; C6
F4 C2; C6; C8; C12
E6 C2; C5; C6; C8; C9; C12

E7 C2; C6; C8; C10; C12; C14; C18
E8 C2; C8; C12; C14; C18; C20; C24; C30

(7.15)

7.3 Complete set of Commuting Operators

For any given Lie algebra g, one is often interested in constructing a complete
set of commuting operators. This is done by considering the decomposition into
subalgebras g � g0 � g00 � : : :. In view of problems connected with missing labels,
the construction of a complete set of commuting operators is straightforward only
for canonical chains. The construction parallels that of the labels given in Chap. 6
(Gel’fand construction) and applies to the canonical chains u.n/ � u.n � 1/ �
: : : � u.2/ � u.1/ and so.n/ � so.n � 1/ � : : : � so.2/. The construction
for the symplectic algebras sp.n/ is more complex and it will not be discussed
here.

7.3.1 The Unitary Algebra u.n/

The commuting Casimir operators can be arranged into a triangular pattern

C1;n C2;n Cn�1;n Cn;n

C1;n�1 Cn�1;n�1
: : : : : :

C1;2 C2;2

C1;1

(7.16)

where C1;n denotes C1.u.n//; : : :.
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7.3.2 The Orthogonal Algebra so.n/, n D Odd

The complete set of commuting operators is, for n D 2k C 1;

C2;2kC1 C4;2kC1 C2k�2;2kC1 C2k;2kC1
C2;2k C4;2k C2k�2;2k C 0

k;2k

: : : : : :

C2;4 C 0
2;4

C2;3
C 0
1;2

(7.17)

7.3.3 The Orthogonal Algebra so.n/, n D Even

The complete set of commuting operators is for n D 2k C 2;

C2;2kC2 C4;2kC2 C2k;2kC2 C 0
kC1;2kC2

C2;2kC1 C2k;2kC1
: : : : : :

C2;4 C 0
2;4

C2;3
C 0
1;2

(7.18)

7.4 Eigenvalues of Casimir Operators

The eigenvalues of the Casimir operators of all classical Lie algebras in a represen-
tation j �i; denoted in short by

h�1; : : :; �n j Cp j �1; : : :; �ni D hCpi (7.19)

were worked out in a series of papers by Perelomov and Popov in the 1960s
(Perelomov and Popov 1966a,b). The algorithm to obtain the eigenvalues is
described below.

7.4.1 The Algebras u.n/ and su.n/

To find the eigenvalues of the Casimir operators, Cp, construct the quantities

Sk D
nP

iD1
.`ki � �ki / ; �i D n� i ; `i D mi C n � i (7.20)
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with

mi D
�

�i for u.n/
�i � �

n
for su.n/

; � D
nP

iD1
�i : (7.21)

Construct the function

'.z/ D
1P
kD2

ak zk; ak D
k�1P
jD1

.k � 1/Š

j Š.k � j /Š Sj : (7.22)

Define the quantities Bp by

exp f�'.z/g D 1 �
1P
pD1

Bp zpC1; B0 D 0: (7.23)

Then, the eigenvalue of Cp in the representation Œ�1; �2; : : :; �n� is
˝
Cp
˛ D Bp �

n Bp�1 . This algorithm gives the following eigenvalues of Casimir operators of
order, p � 3. For u.n/

hC1i D S1

hC2i D S2 � .n � 1/S1
hC3i D S3 �

�
n � 3

2

�
S2 � 1

2
S21 � .n � 1/S1

: : : (7.24)

and for su.n/

hC1i D 0

hC2i D S2

hC3i D S3 �
�
n � 3

2

�
S2

: : : (7.25)

Example 2. Eigenvalue of the quadratic Casimir operator of su(2) in the represen-
tation Œ�1�

From

S2 D
2X

iD1
.`2i � �2i /
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�1 D 1; �2 D 0

`1 D m1 C 1; `2 D m2

m1 D �1 � �1

2
; m2 D ��1

2
(7.26)

one obtains

hC2i D 1

2
�1.�1 C 2/: (7.27)

Example 3. Eigenvalue of the quadratic Casimir operator of su(3) in the represen-
tation Œ�1; �2�

From

S2 D
3X

iD1

�
`2i � �2i

�

�1 D 2; �2 D 1; �3 D 0

`1 D m1 C 2; `2 D m2 C 1; `3 D m3

m1 D �1 � �1 C �2

3
; m2 D �2 � �1 C �2

3
; m3 D ��1 C �2

3
(7.28)

one obtains

hC2i D 6

9

�
�21 C �22 � �1�2 C 3�1

�
: (7.29)

The coefficient 6
9

is usually omitted, since Casimir operators are defined up to a
multiplicative constant.

Example 4. Eigenvalue of the quadratic Casimir operator of su(5) in the represen-
tation Œ�1; �2; �3; �4�

From

S2 D
5X

iD1

�
`2i � �2i

�

�1 D 4; �2 D 3; �3 D 2; �4 D 1; �5 D 0

`1 D m1 C 4; `2 D m2 C 3; `3 D m3 C 2; `4 D m4 C 1; `5 D m5

m1 D �1 � �

5
;m2 D �2 � �

5
;m3 D �3 � �

5
;m4 D �4 � �

5
;m5 D ��

5
(7.30)
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one obtains

hC2i D �21 C �22 C �23 C �24 � �2

5
C 8�1 C 6�2 C 4�3 C 2�4 � 4�; (7.31)

with

� D �1 C �2 C �3 C �4: (7.32)

Example 5. Eigenvalue of the linear and quadratic Casimir operators of u(5) in the
representation Œ�1; �2; �3; �4; �5�

Straightforward application of the formulas above give

hC1i D S1 D � (7.33)

hC2i D S2 � 4S1
D �21 C �22 C �23 C �24 C �25 C 4�1 C 2�2 � 2�4: (7.34)

For example, for the symmetric representation ŒN; 0; 0; 0; 0�,

hC2i D N.N C 4/: (7.35)

7.4.2 The Orthogonal Algebra so.2n C 1/

To find the eigenvalues, construct the quantities

Sk D
CnP
iD�n

.`ki � �ki /I �i D `i � fi
8
<

:

`i D fi C nC i � #0i
`�i D �`i C 2n� 1 .i ¤ 0/

`0 D n

#ji D
�
1 j < i

0 j � i

f�i D �fi ; f0 D 0

S0 D S1 D 0: (7.36)

Construct the function

'.z/ D
1P
kD3

ak zk; ak D
k�1P
jD2

.k � 1/Š

j Š.k � j /Š Sj : (7.37)

Define the quantities Bp by

exp.�'.z// D 1 �
1P
pD2

Bp zpC1; B0 D B1 D 0: (7.38)
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Then, the expectation value of Cp in the representation Œfn; fn�1; ; : : :; f1� (note
the inverse order of the labels) is

˝
Cp
˛ D .2nC1/ ıp0CBp�.nC1

2
/Bp�1�

p�1P
qD1

ŒBq�.nC1

2
/ Bq�1� np�q : (7.39)

Finally, convert Œfn; fn�1; : : :; f1� to the standard notation Œ	1; 	2; : : :; 	n� . This
algorithm gives

hC0i D 2nC 1

hC1i D 0

hC2i D S2

: : : (7.40)

Example 6. Eigenvalue of the quadratic Casimir operator of so(3) in the represen-
tation Œ	1�

From

hC2i D S2 D
C1P
iD�1

Œ`2i � .`i � fi /2�
8
<

:

`1 D f1 C 1C 1 � 1 D f1 C 1

`�1 D �f1 � 1C 2 � 1 D �f1
`0 D 1

;
f�1 D �f1
f0 D 0

(7.41)

one obtains

hC2i D 2f1.f1 C 1/ (7.42)

Converting to the standard notation Œ	1�

hC2i D 2	1.	1 C 1/ (7.43)

Note that these constructions are consistent with the isomorphisms of Chap. 6.
Example 10 gives for the isomorphism su.2/ � so.3/ the relation	1 D �1

2
. Inserting

this relation into (7.43) gives

hC2.su.2//i D 1

2
�1.�1 C 2/ (7.44)

as in (7.27). The additional normalization factor of two in (7.43) is usually omitted
and the label 	1 is called J in quantum mechanics textbooks. The eigenvalues of
the quadratic Casimir operator of the rotation algebra (and group) is then written as

hC2.so.3//i D J.J C 1/: (7.45)
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Example 7. Eigenvalue of the quadratic Casimir operator of so(5) in the represen-
tation Œ	1; 	2�

From

hC2i D S2 D
C2P
iD�2

.2`i fi � f 2
i /:

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

`2 D f2 C 3

`1 D f1 C 2

`0 D 2

`�2 D �f2
`�1 D �f1 C 1

8
<

:

f�2 D �f2
f�1 D �f1
f0 D 0

(7.46)

one obtains

hC2i D 2 f2.f2 C 3/C 2 f1.f1 C 1/: (7.47)

Converting to the standard notation Œ	1; 	2�

hC2i D 2Œ	1.	1 C 3/C 	2.	2 C 1/�: (7.48)

7.4.3 The Symplectic Algebra sp.2n/

For sp.2n/, construct the quantities

Sk D
CnP

iD�n;i¤0
.`ki � �ki /; �i D `i � fi

�
`i D fi C nC i

`�i D �`i C 2n
(7.49)

f�i D �fi ; S0 D S1 D 0

and the function '.z/ as before. Then

˝
Cp
˛ D 2n ıp0 C .Bp � n Bp�1/ �

p�1P
qD1

.Bq � n Bq�1/ .nC 1

2
/p�q: (7.50)

Finally, convert Œfn; fn�1; ::; f1� to the standard notation Œ	1; 	2; : : :; 	��. The
Casimir operators of lowest order, p � 2, are
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hC0i D 2n

hC1i D 0

hC2i D S2

: : : (7.51)

The constant 2n does not count as an independent Casimir operator.

Example 8. Eigenvalue of the quadratic Casimir operator of sp(2) in the represen-
tation Œ	1�

From

hC2i D S2 D
1X

iD�1;i¤0
.f 2
i � 2`ifi /

`1 D f1 C 2; `�1 D �f1; f�1 D �f1 (7.52)

one obtains

hC2i D �2f1.f1 C 2/: (7.53)

Converting to the standard notation Œ	1�

hC2i D �2	1.	1 C 2/: (7.54)

Note once more the consistency with the isomorphisms sp.2/ � su.2/ apart from
an overall minus sign.

7.4.4 The Orthogonal Algebra so.2n/

For these algebras, construct the quantities

Sk D
CnP

iD�n;i¤0
.`ki � �ki /; �i D `i � fi

�
`i D fi C nC i � .1C "i /

`�i D �`i C 2n � 2 "i D
8
<

:

1 i > 0

�1 i < 0

0 i D 0

f�i D �fi ; S0 D S1 D 0 (7.55)
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and the function '.z/ as before. Then

˝
Cp
˛ D 2n ıp0 C .Bp � n Bp�1/�

p�1P
qD1

.Bq � n Bq�1/ .n � 1

2
/p�q: (7.56)

Finally, convert Œfn; fn�1; : : :; f1� to Œ	1; 	2; : : :; 	n�. The eigenvalues of Casimir
operators of lowest order, p � 2, are

hC0i D 2n

hC1i D 0

hC2i D S2

: : : (7.57)

Example 9. Eigenvalue of the quadratic Casimir operator of so(2) in the represen-
tation Œ	1�

From

S2 D
C 1P

i D �1;i¤0
.2 li fi � f 2

i /

�
`1 D f1
`�1 D �f1 f�1 D �f1 (7.58)

one obtains

hC2i D 2 f 2
1 : (7.59)

Converting to standard notation Œ	1�

hC2i D 2	21: (7.60)

Since so.2/ is Abelian it has also a linear invariant. The quadratic invariant C2, is
the square of the linear invariant C1. In quantum mechanics textbooks, the label
	1 D M and the factor of two are omitted.

Example 10. Eigenvalue of the quadratic Casimir operator of so(4) in the represen-
tation Œ	1; 	2�

From

S2 D
C 2P

i D �2;i¤0
.2 li fi � f 2

i /

�
`2 D f2 C 2

`�2 D �f2
�

`1 D f1 C 1

`�1 D �f1 C 1

�
f�1 D �f1
f�2 D �f2 (7.61)
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one obtains

hC2i D 2 f2.f2 C 2/C 2f 21 : (7.62)

Converting to standard notation Œ	1; 	2�

hC2i D 2 Œ	1.	1 C 2/C 	22�: (7.63)

Example 11. Eigenvalue of the quadratic Casimir operator of so(6) in the represen-
tation Œ	1; 	2; 	3�

In this case one has

hC2i D 2 f3.f3 C 4/C 2 f2.f2 C 2/C 2f 2
1 (7.64)

and, in standard notation, Œ	1; 	2; 	3�,

hC2i D 2 Œ	1.	1 C 4/C 	2.	2 C 2/C 	23�: (7.65)

Note that for all algebras so.2n/ the dependence on the last quantum number 	� is
always quadratic, so that the eigenvalue for C	� is the same as for �	� .

7.5 Eigenvalues of Casimir Operators of Order One and Two

The eigenvalues of Casimir operators of order p � 2 of all classical Lie algebras
are summarized in Table 7.1. In this table, all labels are denoted by �i .

Table 7.1 Eigenvalues of Casimir operators of order p � 2 of all classical Lie
algebras

Algebra Labels Order hC2i
u.n/ Œ�1; �2; : : :; �n� 1

nP

iD1

�i D �

u.n/ Œ�1; �2; : : :; �n� 2
nP

iD1

�i .�i C nC 1� 2i/

su.n/ Œ�1; �2; : : :; �n�1; 0� 2
nP

iD1

.�i � �
n
/ .�i � �

n
C 2n� 2i/

so.2nC 1/ Œ�1; �2; : : :; �n� 2
nP

iD1

2 �i .�i C 2nC 1� 2i/

so.2n/ Œ�1; �2; : : :; �n� 2
nP

iD1

2 �i .�i C 2n� 2i/

sp.2n/ Œ�1; �2; : : :; �n� 2
nP

iD1

2 �i .�i C 2nC 2� 2i/



Chapter 8
Tensor Operators

8.1 Definitions

We introduce an irreducible basis B and write it generically as j �� i, where � are
the labels of g and � those of the subalgebra g0

ˇ
ˇ̌
ˇ
ˇ
ˇ

g � g0
# #
� �

+

: (8.1)

The elements of g, X� , when acting on B, do not lead out of B. Thus, when acting
on the basis, we obtain a linear combination of the components

X� j �� i D
X

�0

h ��0 j X� j �� i j ��0 i: (8.2)

Example 1. The action of the elements of so(3) on its irreducible basis

From Sect. 6.13 we have

Jz jJ;M i D M jJ;M i
J˙ jJ;M i D

p
J.J C 1/�M.M ˙ 1/ jJ;M ˙ 1i : (8.3)

Definition 1. Tensor operators with respect to g

A tensor operator T �� , sometimes written as T .��/, is an operator that satisfies
the commutation relations

ŒX� ; T
�
� � D

X

�0

h ��0 j X� j �� i T ��0

(8.4)

with the elements of g.

© Springer-Verlag Berlin Heidelberg 2015
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Example 2. Tensor operators with respect to so(3)

Tensor operators with respect to so.3/, T k
 , k D integer, 
 D integer D �k;
: : : ;Ck, satisfy commutation relations

�
Jz; T

k



� D 
T k

�
J˙; T k


� D
p
k.k C 1/� 
.
 ˙ 1/T k
˙1: (8.5)

The label k is called the rank of the tensor (not to be confused with the rank of the
algebra). For k D 0, the tensor is called a scalar, for k D 1 a vector, for k D 2 a
quadrupole tensor, etc.. A coordinate realization is

T k
 D
r

4�

2k C 1
Y k
 .#; '/: (8.6)

8.2 Coupling Coefficients

The elements of the basis are themselves tensors. One can then form tensor products
in the sense of Chap. 6. For the basis, the tensor product is denoted by

j �1 �2I a �12 �12 i D
X

�1;�2

h �1 �1 �2 �2 j a �12 �12 i j �1 �1 i j �2 �2 i:

(8.7)

The coefficients in the sum are called coupling coefficients or Clebsch–Gordan
coefficients. Sometimes, the tensor product contains the same representation more
than once. A multiplicity label, a, is introduced in these cases. The notation in (8.7)
is the ket notation. The corresponding bra notation is

h�1�2I a�12�12j D
X

�1;�2

h�1�1j h�2�1j ha�12�12 j �1�1�2�2i�
: (8.8)

The coefficients are in general complex and satisfy the orthogonality relations

X

�1;�2

ha�12 �12 j �1�1�2�2 i�h�1�1�2�2 j a0�0
12�

0
12i D ıaa0ı�12�

0

12
ı�12�

0

12

X

a;�12;�12

h�1�1�2�2 j a�12�12 i�h a�12�12 j �1�
0
1�2�

0
2i D ı�1�0

1
ı�2�0

2
: (8.9)

Multiplying (8.7) by ha�12�12 j �1�1�2�1i�, summing over a;�12; �12, and using
the second orthogonality relation, one obtains
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j�1�1i j�2�2i D
X

a;�12;�12

ha�12�12 j �1�1�2�2i� j�1�2I a�12�12i ; (8.10)

called the inverse relation.

Example 3. Clebsch–Gordan coefficients of so(3)

It is convenient here to use the notation found in most textbooks in quantum
mechanics. The basis states are labelled by

ˇ̌
ˇ
ˇ
ˇ
ˇ

so.3/ � so.2/
# #
J M

+

: (8.11)

There are no multiplicity labels in this case and the tensor product is written as

j J1 J2I J12 M12 i D
X

M1;M2

h J1 M1 J2 M2 j J12 M12 i j J1 M1 i j J2 M2 i

(8.12)

Coupling coefficients are defined up to a phase. For the coefficients of so.3/, the
Condon–Shortley phase convention is almost always used. In this convention, the
coefficient with maximumM12 D J12 is taken positive and real

h J1 M1 J2 M2 j J12; M12 D J12 i � 0: (8.13)

All coefficients are then real. Instead of the Clebsch–Gordan coefficients, another
coupling coefficient is often used, called Wigner 3-j symbol, related to the Clebsch–
Gordan coefficient by

�
J1 J2 J3
M1 M2 M3

�
D .�/J1�J2�M3p

2 J3 C 1
h J1 M1 J2 M2 j J3;�M3 i: (8.14)

8.3 Wigner–Eckart Theorem

In the evaluation of the matrix elements of a tensor operator, it is convenient to make
use of a theorem, called Wigner–Eckart theorem, that states that all matrix elements
can be obtained from a single one, called reduced matrix element and denoted by a
double bar k T � k;

h �1 �1 j T �� j �2 �2 i D
X

a

h a �1 �1 j � � �2 �2 i� h a �1 k T � k �2 i:
(8.15)
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Here a is the multiplicity label (if any). Note that different authors have often
different definitions (up to a constant) of the reduced matrix elements. The inverse
relation is

ha�1 k T � k �2i D
X

�1;�2

h���2�2 j a�1�1ih�1�1 j T �� j �2�2i: (8.16)

Example 4. Wigner–Eckart theorem for so(3)

In the notation of Example 3, the Wigner–Eckart theorem is written as

h J1 M1 j T k
 j J2 M2 i D h J2 M2 k 
 j J1 M1 i h J1 k T k k J2 i 1p
2 J1 C 1

:

(8.17)

Note the extra factor of .2 J1 C 1/� 1
2 . With this definition

h J1 M1 j T k
 j J2 M2 i D .�/J1�M1

�
J1 k J2

�M1 
 M2

�
h J1 k T k k J2 i: (8.18)

The inverse relation is

h J1 k T k k J2 i D
p
2 J1 C 1

X

M1;M2

h J2 M2 k 
 j J1 M1 i

� h J1 M1 j T k
 j J2 M2 i: (8.19)

Matrix elements of tensor operators satisfy selection rules

�˝ �2 � �1

�˝�2 � �1 (8.20)

that is the representation �1 must be contained in the tensor product �˝�2, and the
representation�1 must be contained in the tensor product�˝�2.

Example 5. Selection rules for so(3)

The matrix elements of the tensor operator T k
 vanish

˝
J1;M1 j T k
 j J1M2

˛ D 0 (8.21)

unless

M1 D M2 C 
; j J2 C k j� J1 �j J2 � k j : (8.22)

By making use of the Wigner–Eckart theorem, from the knowledge of one matrix
element, one can compute all others.
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Example 6. Use of the Wigner–Eckart theorem for so(3)

Consider the problem of computing h J M j JC j J M 0 i from the knowledge
of hJM j Jz j JM 0i. To solve this problem, write down the Wigner–Eckart theorem
for Jz

h J M j Jz j J M i D .�/J�M
�
J 1 J

�M 0 M

�
h J k J .1/ k J i D

D M
p
J.J C 1/.2J C 1/

h J k J .1/ k J i D M; (8.23)

and obtain

hJ k J .1/ k J i D
p
J.J C 1/.2J C 1/: (8.24)

In writing (8.23), use has been made of the tensorial character, k D 1, of the angular
momentum and its z-component, 
 D 0, under so.3/.

Next, write down the Wigner–Eckart theorem for JC

h J M j JC j J M 0i D .�/J�M
�
J 1 J

�M 1 M 0
�

h J k J .1/ k J i: (8.25)

Insert now the reduced matrix element obtained previously to find

h J M j JC j J M 0i D
p
J.J C 1/�M 0.M 0 C 1/: (8.26)

The matrix element has selection rulesM D M 0 C 1.

8.4 Nested Algebras: Racah’s Factorization Lemma

In the previous sections, starting with

ˇ
ˇ̌
ˇ
ˇ
ˇ

g � g0
# #
� �

+

(8.27)

a basis for the coupled algebras

ˇ̌
ˇ
ˇ
ˇ
ˇ

g1 ˚ g2 � g12 � g0
12

# # # #
�1 �2 a�12 �12

+

(8.28)
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has been constructed

j �1 �2I a �12 �12 i D
X

�1;�2

h �1 �1 �2 �2 j a �12 �12 i j �1 �1 i j �2 �2 i:

(8.29)

Quite often, one needs to consider a further decomposition into representations of
another algebra g00

ˇ̌
ˇ
ˇ
ˇ
ˇ

g � g0 � g00
# # #
� � 	

+

: (8.30)

The algebras g; g0; g00 are called nested. The basis for coupled nested algebras

ˇ̌
ˇ
ˇ
ˇ
ˇ

g1 ˚ g2 � g12 � g0
12 � g00

12

# # # # #
�1 �2 a�12 �12 	12

+

; (8.31)

can be written as

j �1 �2I a �12 I �12I 	12 i D
D
X

�1;�2
	1;	2

h �1 �1 	1I �2 �2 	2 j a �12 �12 	12 i j �1 �1 	1 i j �2 �2 	2 i; (8.32)

where the coefficients in the sum are called nested coupling coefficients. Their
calculation is rather complex. However, Racah showed in the 1940’s that nested
coefficients can be split into two pieces, one for each reduction, g � g0; and
g0 � g00, called Racah’s factorization lemma (Racah 1949).

Lemma 1. Factorization of coupling coefficients

h �1 �1 	1I �2 �2 	2 j a �12 �12 	12 i D
h �1 �1 �2 �2 j a �12 �12 i h �1 	1 �2 	2 j �12 	12 i: (8.33)

The coupling coefficients for algebras of rank ` > 1 are often called isoscalar
factors.

Example 7. Isoscalar factors of so(4)

Consider the nested chain

ˇ
ˇ
ˇ
ˇ̌
ˇ

so.4/ � so.3/ � so.2/
# # #

.!1; !2/ J M

+

(8.34)
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The coupled basis is

ˇ
ˇ
ˇ̌
ˇ
ˇ

so.4/1 ˚ so.4/2 � so.4/12 � so.3/12 � so.2/12
# # # # #

.�1; �2/ .�1; �2/ .!1; !2/ J12 M12

+

(8.35)

that is

X

J1;J2
M1;M2

h.�1; �2/ J1 .�1; �2/ J2 j .!1; !2/ J12ihJ1M1J2M2 j J12M12i

� j.�1; �2/ J1M1i j.�1; �2/ J2M2i : (8.36)

The first factor in (8.36) is the isoscalar factor for so.4/ � so.3/, while the second is
the isoscalar factor for so.3/ � so.2/. The isoscalar factors are sometimes written as

�
.�1; �2/ .�1; �2/

J1 J2

ˇ
ˇ
ˇ
ˇ
.!1; !2/

J12

 �
J1 J2
M1 M2

ˇ
ˇ
ˇ
ˇ
J12

M12


; (8.37)

called Wigner notation. Note again that isoscalar coefficients are defined up to an
arbitrary phase.

Example 8. Coupling coefficients of su(3)

For applications to particle physics, one needs to consider the coupling coeffi-
cients of su.3/ in the basis

ˇ
ˇ
ˇ
ˇ
ˇ̌

su.3/ � su.2/ ˚ u.1/ � spin.2/
# # # #

.�; 	/ I Y Iz

+

: (8.38)

The coupled basis is

ˇ
ˇ
ˇ
ˇ̌
ˇ

su.3/1 ˚ su.3/2 � su.3/12 � Œsu.2/˚ u.1/�12 � Œspin.2/�12
# # # # #

.�1; 	1/ .�2; 	2/ .�; 	/ I; Y Iz

+

: (8.39)

Using Racah’s factorization lemma this can be written as

X

I1;Y1;Iz1
I2;Y2;Iz2

h.�1; 	1/ I1; Y1I .�2; 	2/ I2; Y2 j .�; 	/ I; Y i � hI1Iz1 I I2Iz2 j I; Izi

� j.�1; 	1/ I1Y1Iz1i j.�2; 	2/ I2Y2; Iz2i ;
(8.40)
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where the first factor is the su.3/ � su.2/˚ u.1/ coefficient and the second factor
is the su.2/ � spin.2/ coefficient, called isospin Clebsch–Gordan coefficient. The
su.3/ � su.2/˚ u.1/ coupling coefficients have been tabulated by de Swart (1963).

8.5 Adjoint Operators

Consider the matrix elements of the Hermitian conjugate of the tensor operator T ��

h�1�1 j .T �� /� j �2�2 i D h�2�2 j T �� j �1�1i�: (8.41)

If T �� is a tensor operator, .T �� /
� is not. But one can show that the following operator

is a tensor operator

adj
�
T ��
� D .�1/f .�;�/ �T ����

��
: (8.42)

In this expression, written generically for tensor operators with respect to

ˇ̌
ˇ
ˇ
ˇ
ˇ

g � g0
# #
� �

+

; (8.43)

the labels�� and �� denote the representations of g and g0 such that

�˝�� � Œ0�

�˝ �� � .0/; (8.44)

where Œ0� denotes the identity representation of g and .0/ the identity representation
of g0. The phase f .�; �/ is obtained from the commutation relations with the
elements of g. For all representations of so.2n C 1/ and sp.2n/, �� D �. For
su.n/, the representations�� and� are related by the equivalence relation 2, given
in Chap. 6. Also, for so.2n/, �� is the conjugate representation Œ�1; �2; : : : ;��n�.

The operator adj
�
T ��
�

is called the adjoint. It transforms under the operations of
g in the same manner as T . If adj.T / D T the operator is called self-adjoint. The
condition for self-adjointness is

adj
�
T ��
� D .�1/f .�;�/ .T ���� /� D T �� : (8.45)

Example 9. Adjoint operators of so(3)

The tensor operator of

ˇ
ˇ
ˇ
ˇ
ˇ̌

so.3/ � so.2/
# #
k 


+

(8.46)



8.6 Recoupling Coefficients 115

adjoint to T k
 , k Dinteger, 
 Dinteger, will be defined in these lecture notes as

adj
�
T k

� D .�1/k�
 .T k�
/� adj.T / D QT �: (8.47)

An alternative definition and notation is often used in quantum mechanics textbooks
(Messiah 1958, p. 572). The adjoint of T k
 is denoted by

Sk
 D .�1/
 �T k�

��
: (8.48)

The notation of Wybourne is yet different with a dagger inside the indices
(Wybourne 1974) . The Definition (8.47) will be used in Chap. 9, Sect. 9.7 to define
annihilation operators, Qbl;m D .�/l�m bl;�m, that transform in the same way as the
creation operators, b�l;m, under so.3/. Note that the creation operators are not self-
adjoint. With products of creation and annihilation operators one can form tensor
operators that are self-adjoint, in particular the angular momentum operator, L1
 .
The situation is similar for fermion operators which transform as representations of
spin.3/ � su.2/ and have half-integer quantum numbers j;m

ˇ
ˇ
ˇ
ˇ
ˇ̌

spin.3/ � su.2/ � spin.2/
# #
j m

+

: (8.49)

The adjoint operator of the fermion creation operator a�j;m will be defined in

Chap. 10 as Qaj;m D .�/j�m aj;�m. While for boson operators the two Definitions
(8.47) and (8.48) are both possible, for fermion operators the Definition (8.48) gives
rise to complex phases.

8.6 Recoupling Coefficients

In treating physical systems composed of more than two particles, one needs
to couple three or more representations of g. Consider three representations
j�1; �1i ; j�2; �2i ; j�3; �3i. The coupled state can be written as

j .�1�2/a12 �12;�3I a��i D
D

X

a0; a23;�23

˝
�1.�2�3/ a23;�23I a0� j .�1�2/ a12 �12 �3I a�

˛

� j �1.�2�3/ a23 �23 �3I a0�� i; (8.50)

where the coefficient in the sum is called recoupling (or Wigner) coefficient.
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J 1

J
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J3

J

J 21

J 1

J
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J3

J

J
32

Fig. 8.1 Coupling schemes of three angular momentum vectors, J1, J2 , and J3

Example 10. Recoupling coefficients of so(3)

For the rotation algebra so.3/, the recoupling coefficient is written as

j J1; .J2; J3/ J23 I JM i D
X

J12

h .J1J2/ J12; J3; J j J1; .J2; J3/ J23 ; J i

� j .J1J2/ J12; J3I JM i: (8.51)

It is called recoupling coefficient because it relates two possible coupling schemes,
that is first couple J1 to J2 to give J12, which is then coupled to J3 to give the final
J , or first couple J2 and J3 to give J23 which is then coupled to J1 to give the
final J . These different coupling schemes are displayed graphically in Fig. 8.1. The
recoupling coefficient of so.3/ is usually written as

h .J1J2/ J12; J3; J j J1; .J2; J3/ J23 ; J i D

D .�/J1CJ2CJ3CJp.2J12 C 1/.2J23 C 1/

�
J1 J2 J12

J3 J J23

�
:

(8.52)

The symbol in brackets is called a Wigner 6-j symbol.

Example 11. Recoupling coefficients of so(4)

These coefficients can be written as

j Œ.�1; �2/ .#1; #2/� .�1; �2/I .!1; !2/I .�1; �2/ i D
D
X

�1;�2

h Œ .!1; !2/ .�1; �2/� .�1; �2/I .#1; #2/I .�1; �2/ j

Œ .�1; �2/.#1; #2/� .�1; �2/I .!1; !2/I .�1; �2/ i
� j Œ.!1; !2/ .�1; �2/� .�1; �2/I .#1; #2/I .�1; �2/ i: (8.53)
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8.7 Symmetry Properties of Coupling Coefficients

It is of interest to list the symmetry properties of coupling coefficients. The most
important property is the symmetry under interchange of the indices 1 and 2.

h �1 �1 �2 �2 j a �� i D '1 h �2 �2 �1 �1 j a �� i; (8.54)

where '1 is a phase. Other symmetry properties can be derived from consideration
of the 3-j symbols for arbitrary Lie algebras

U
�1�2Ia3�3
�1;�2;�3

D Œ�3�
1=2

�
�1 �2 �3

�1 �2 �3

�

a3

: (8.55)

Example 12. Symmetry properties for coupling coefficients of so(3)

The Clebsch–Gordan coefficients satisfy

hJ1M1J2M2 j JM i D .�1/J1CJ2�J hJ2M2J1M1 j JM i: (8.56)

In order to display the symmetry properties of the coupling coefficients in full, it is
convenient to introduce the Wigner 3-j symbols

�
J1 J2 J3

M1 M2 M3

�
D .�/J1�J2�M3

p
2J3 C 1

hJ1M1J2M2 j J3;�M3i: (8.57)

In terms of these symbols, the symmetry properties are

�
J1 J2 J3
M1 M2 M3

�
D
�
J2 J3 J1
M2 M3 M1

�
D
�
J3 J1 J2
M3 M1 M2

�

D .�/J1CJ2CJ3
�
J1 J3 J2

M1 M3 M2

�
(8.58)

and

�
J1 J2 J3

�M1 �M2 �M3

�
D .�/J1CJ2CJ3

�
J1 J2 J3
M1 M2 M3

�
: (8.59)

8.8 How to Compute Coupling Coefficients

Explicit formulas derived by Racah are available for so.3/ � su.2/. The Wigner 3-j
symbol is given by the Racah formula
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�
j1 j2 j3
m1 m2 m3

�
D ı.m1 Cm2 Cm3/

�
s
.j1 C j2 � i3/Š.j2 C i3 � j1/Š.j3 C j1 � j2/Š

.j1 C j2 C j3 C 1/Š

�
p
.j1 Cm1/Š.j1 �m1/Š.j2 Cm2/Š.j2 �m2/Š

�
p
.j3 Cm3/Š .j3 �m3/Š

�
X

t

.�/j1�j2�m3Ct 1

t Š.j1 C j2 � j3 � t/Š

� 1

.j3 � j2 Cm1 C t/Š.j3 � j2 �m2 C t/Š

� 1

.j1 �m1 � t/Š.j2 Cm2 � t/Š
: (8.60)

Here .�m/Š D 1 whenm > 0, t D integer, 0Š D 1 and

t � 0; j1 C j2 � j3 � t; �j3 C j2 �m1 � t;

�j3 C j1 Cm2 � t; j1 �m1 � t; j2 Cm2 � t:
(8.61)

Since so.4/ � so.3/˚ so.3/ � su.2/˚ su.2/, coupling coefficients for so.4/ can
be obtained from those of so.3/.

For larger algebras one has two cases: canonical and non-canonical chains. For
canonical chains the construction is simple but rarely useful. For non-canonical
chains it is difficult but important. The building-up principle is often used to
construct coupling coefficients (isoscalar factors) for non-canonical chains. This
makes use of

1. Branching rules
2. Kronecker products
3. Simple isoscalar factors (those that are zero or one)
4. Symmetry and reciprocity
5. Building-up process (start from simple and build more complex).

8.9 How to Compute Recoupling Coefficients

Explicit formulas derived by Racah are available for so.3/� su.2/. The Wigner 6-j
symbol is given by
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�
j1 j2 j3
l1 l2 l3

�
D �.j1 j2 j3/� .j1 l2 l3/� .l1 j2 l3/� .l1 l2 j3/

�
X

t

.�/t .t C 1/Š
1

Œt � .j1 C j2 C j3/�Š

� 1

Œt � .j1 C l2 C l3/� Š Œt � .l1 C j2 C l3/� Š

� 1

.j1 C j2 C l1 C l2 � t/ Š .j2 C j3 C l2 C l3 � t/ Š

� 1

.j3 C j1 C l3 C l1 � t/Š
; (8.62)

where

�.abc/ D
s
.aC b � c/ Š.b C c � a/ Š.c C a � b/ Š

.a C b C c C 1/ Š
(8.63)

and

t � j1 C l2 C j3 ; t � j1 C l2 C l3 ; t � l1 C j2 C l3

t � l1 C l2 C j3 ; j1 C j2 C l1 C l2 � t ; j2 C j3 C l2 C l3 � t

j3 C j1 C l3 C l1 � t

: (8.64)

For other algebras, recoupling coefficients are obtained by the building-up process.

8.10 Properties of Recoupling Coefficients

The recoupling coefficients have several interesting properties. The coefficient
vanishes

�
j1 j2 j3
l1 l2 l3

�
D 0 (8.65)

unless .j1; j2; l3/ ; .j1; l2; l3/ ; .l1; j2; l3/ ; .l1; l2; j3/ satisfy the triangular condition
for .a; b; c/, that is j aC b j� c �j a � b j.



120 8 Tensor Operators

They have the symmetry properties

�
j1 j2 j3

l1 l2 l3

�
D
�
j2 j1 j3

l2 l1 l3

�
D
�
j1 j3 j2

l1 l3 l2

�

D
�
l1 l2 l3
j1 j2 l3

�
D
�
j1 l2 l3
l1 j2 j3

�
: (8.66)

They satisfy the orthogonality relation

X

j

.2j C 1/

�
j1 j2 j

j3 j4 j
0
� �

j1 j2 j

j3 j4 j
00
�

D ıj 0j 00

2j 0 C 1
: (8.67)

When one of the j ’s is zero, they have the special value

�
j1 j

0
2 j3

j2 j
0
1 0

�
D .�1/ j1Ci2Cj3
p
.2j1 C 1/.2j2 C 1/

ıj1 j 0

1
ıj2 j 0

2
: (8.68)

The 6-j symbols are related to the 3-j symbols by

�
j1 j2 j3
l1 l2 l3

�
D

X

m1m2m3
m0

1m
0

2m
0

3

.�1/j1Cl2Cj3Cl1Cl2Cl3Cm1Cm2Cm3Cm0

1Cm0

2Cm0

3

�
�
j1 j2 j3
m1 m2 m3

��
j1 l2 l3

�m1 m
0
2 m

0
3

�

�
�

l1 j2 l3
�m0

1 �m2 m
0
3

��
l1 l2 j3
m0
1 �m0

2 �m3

�
: (8.69)

8.11 Double Recoupling Coefficients

In treating physical systems composed of four particles, one needs double recou-
pling coefficients (9 � j symbols). Introducing four representations j �1�1 i;
j �2�2 i; j �3�3 i; j �4�4 i, one defines the double recoupling coefficients as

j .�1�3/ a13�13 .�2�4/ a24�24 I a�� i D
D

X

a0 ; a12 J12; a34 J34

h .�1�2/ a12�12 .�3�4/ a34�34 I a0�� j

j .�1�3/ a13�12 .�2�4/ a24�24 I a�� i
� j .�1�2/ a12�12 .�3�4/ a34�34 I a0�� i: (8.70)
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Fig. 8.2 Coupling schemes of four angular momentum vectors, J1 , J2, J3, and J4

Example 13. Double recoupling coefficients of so(3)

The double recoupling coefficients of so.3/ are written as

j J1J3 .J13/ J2J4 .J24/ J M i D

D
X

J12J34

p
.2J13 C 1/.2J24 C 1/.2J12 C 1/.2J34 C 1/

8
<

:

J1 J2 J12
J3 J4 J34
J13 J24 J

9
=

;

� j J1J2 .J12/ J3J4 .J34/ J M i: (8.71)

The quantity in curly bracket is called a 9-j symbol. The recoupling is shown
graphically in Fig. 8.2. The 9-j symbols are related to the 6-j symbols by

�
j1 j2 J

j4 j3 k

�
D .�/j2CJCj3Ckp.2J C 1/ .2k C 1/

8
<

:

j1 j2 J

j3 j4 J

k k 0

9
=

;
: (8.72)

8.12 Coupled Tensor Operators

In the same way in which one couples representations, one can also couple tensors

h
T �

0 ˝ U�00

i˛�

�
D
X

�0�00

h�0�0�00�00 j ˛�� iT �0

�0

U�00

�00

: (8.73)

also called tensor product.
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Example 14. Tensor product for so(3)

The tensor product of two tensors is written here as

h
T k

0 � U k00

ik

q
D
X

q0q00

h k0q0k00q00 j k q iT k0

q0

U k00

q00

; (8.74)

where the coefficient in the sum is an ordinary Clebsch–Gordan coefficient. The
symbol � is commonly used to denote tensor products with respect to so.3/. (A
better notation would be ˝.)

8.13 Reduction Formula of the First Kind

The tensor product often involves operators acting separately on systems 1 and 2.

T kq .1; 2/ D ŒT k1.1/ � T k2.2/�kq : (8.75)

Using properties of the tensor product it is possible to express the matrix elements
of the product in terms of matrix elements of systems 1 and 2 separately

˝
˛1 j1 ˛2 j2 J k T k k ˛0

1 j
0
1 ˛

0
2 j

0
2 J

0 ˛ D
p
.2J C 1/.2k C 1/.2J 0 C 1/

�
8
<

:

j1 j2 J

j 0
1 j

0
2 J

0
k1 k2 k

9
=

;
˝
˛1 j1 k T k1 k ˛0

1 j
0
1

˛ ˝
˛2 j2 k T k2 k ˛0

2 j
0
2

˛
: (8.76)

Here the ˛’s denote any additional quantum number (label). A special case is the
scalar product

T k 	 U k D .�1/k
p
2k C 1 ŒT k � U k�00

D
X

q

.�/q T kq U k�q : (8.77)

In this case, the formula simplifies to

h˛1 j1 ˛2 j2 J k T k.1/ 	 T k.2/ k ˛0
1 j

0
1 ˛

0
2 j

0
2 J

0i D

D .�1/j2CJCj 0

1

p
2J C 1

�
j1 j2 J

j 0
2 j

0
1 k

�

� ˝˛1 j1 k T k k ˛0
1 j

0
1

˛ ˝
˛2 j2 k T k k ˛0

2 j
0
2

˛
ıJJ0 : (8.78)



8.14 Reduction Formula of the Second Kind 123

Another simple case is that in which one of the tensor operators is the identity
operator. Using (8.78), one obtains

˝
˛1j1˛2j2J k T k.1/ k ˛0

1j
0
1˛

0
2j

0
2J

0˛

D .�1/j1CJ 0Cj 0

2Ckp.2J C 1/ .2J 0 C 1/

�
J j1 j2
j 0
1 J

0 k

�

˝
˛1j1 k T k.1/ k ˛0

1j
0
1

˛
ı˛2˛0

2
ıj2j 0

2
: (8.79)

8.14 Reduction Formula of the Second Kind

This is the situation when the tensor operator involves only system 1

T kq .1/ D ŒT k1.1/ � T k2.1/�kq : (8.80)

In this case one obtains

˝
˛ j k T k k ˛0 j 0 ˛ D .�/ j CkC j 0

p
.2k C 1/

�
X

˛00j 00

˝
˛ j k T k1 k ˛00 j 00 ˛ ˝˛00 j 00 k T k2 k ˛0 j 0 ˛

�
k1 k2 k

j 0 j j 00
�
; (8.81)

called reduction formula of the second kind.



Chapter 9
Boson Realizations

9.1 Boson Operators

Realizations of Lie algebras in terms of boson operators are of great interest for
applications to a variety of problems in physics, most notably to oscillator problems
in quantum mechanics and to algebraic models of rotation-vibration spectra of
molecules (vibron model) and nuclei (interaction boson model).

Let b˛.˛ D 1; ::; n/ be a set of boson operators, satisfying the commutation
relations

Œb˛; b
�

˛0

� D ı˛˛0 Œb˛; b˛0 � D Œb�˛; b
�

˛0

� D 0: (9.1)

The operators b˛ are often called annihilation (or destruction) operators, while their
hermitian conjugates b�˛ are called creation operators. The unitary algebra u.n/ can
be constructed by taking bilinear products of creation and annihilation operators

g + G˛ˇ D b�˛bˇ ˛; ˇ D 1; 	 	 	 ; n: (9.2)

The algebra is composed of n2 elements satisfying

ŒG˛ˇ;G�ı� D ıˇ�G˛ı � ı˛ı G�ˇ: (9.3)

(When written in this form the algebra is the real form gl.n;R/ � u.n/.) A basis
for the representations of u.n/ is

B W 1

N b�˛ b
�

˛0

	 	 	
„ ƒ‚ …

j 0 i � jN i

N times (9.4)
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Here j0i denotes a vacuum state, such that

b˛ j0i D 0; (9.5)

and N is a normalization. In this construction, the basis states all belong to the
totally symmetric irreducible representation

ŒN � � �� : : :�„ ƒ‚ …

N (9.6)

of u.n/ written in (9.4) as jN i. The dimension of the basis is the dimension of the
representation ŒN �, given in Chap. 6,

dimŒN � D
Y

jD2;:::;n

�
N C j � 1
j � 1

�
: (9.7)

Thus, with boson operators it is possible to construct the Lie algebra u.n/, but only
its symmetric representations (Bose-Einstein basis).

Any classical Lie algebra is a subalgebra of u.n/ (Ado’s theorem) and thus can
be written as a linear combination of the elementsG˛ˇ . In the following sections an
explicit construction of the Lie algebras u.1/,u.2/,u.3/,u.4/,u.5/,u.6/ and u.7/ and
their subalgebras will be given.

9.2 The Unitary Algebra u.1/

This algebra can be simply constructed with one boson operator b, satisfying

Œb; b�� D 1 Œb; b� D Œb�; b�� D 0: (9.8)

The algebra is Abelian and composed of the single element

g + b�b: (9.9)

This operator is called the number operator, ON . (A hat will be placed above the
operators to distinguish them from their eigenvalues.) The basis, written as

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.1/
#
N

+

(9.10)



9.2 The Unitary Algebra u.1/ 127

is

B W 1p
NŠ
b�N j 0 i �j N i: (9.11)

(The capital letter N is used here, rather than the commonly used lowercase letter
n; not to confuse it with the number of dimensions in u.n/.) In the case of u.1/,
all representations are symmetric and thus can be constructed with boson operators.
The boson operators satisfy

b� jN i D p
N C 1 jN C 1i I b jN i D p

N jN � 1i I b j0i D 0: (9.12)

Example 1. The one dimensional harmonic oscillator in quantum mechanics

The algebra u.1/ can be used to describe the one-dimensional harmonic oscil-
lator. The boson operators are related to the dimensionless coordinate, x, and
momentum, px D �i ddx , by

b D 1p
2
.x C ipx/ ; b� D 1p

2
.x � ipx/ : (9.13)

The quantum mechanical Hamiltonian is

H D 1

2

�
p2x C x2

� D 1

2

�
� d2

dx2
C x2

�
: (9.14)

When written in terms of elements of the Lie algebra u.1/, it reads

H D b�b C 1

2
D ON C 1

2
: (9.15)

The representations of u.1/ are labelled by the integer N D 0; 1; : : : . The
eigenvalues of H are thus

E.N/ D N C 1

2
; N D 0; 1; : : : (9.16)

The basis states are

jN i D 1p
NŠ
b�N j0i : (9.17)
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9.3 The Algebras u.2/ and su.2/

In this case, the index ˛ D 1; 2. The algebra u.2/ has four elements

g + b
�
1b1; b

�
1b2; b

�
2b1; b

�
2b2: (9.18)

Beginning with u.2/, the study of the algebraic structure of u.n/ requires several
steps:

1. The enumeration of all possible subalgebra chains and their branchings
2. The construction of the basis B for all chains
3. The construction of all invariant operators and their eigenvalues

9.3.1 Subalgebra Chains

There are two possible subalgebra chains:
Subalgebra I: u.2/ � u.1/
This is the trivial Abelian subalgebra u.1/

g0 + b
�
1b1; (9.19)

leading to the canonical chain

ˇ
ˇ̌
ˇ
ˇ
ˇ

u.2/ � u.1/
# #
N n1

+

; (9.20)

with Gel’fand pattern

�
N 0

n1

�
: (9.21)

Here the labels of the representations are written under the algebras. Two notations
are often used for canonical chains: a bra-ket notation in which only non-zero
quantum numbers are displayed, and the Gel’fand notation of Chap. 6 where all
quantum numbers, including zeros, are displayed. The zero in the latter notation
arises from the fact that only symmetric representations can be constructed with
boson operators. Using the rules of Chap. 6, one can find easily the branching

n1 D 0; 1; : : : ; N: (9.22)
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The operator

ON D b
�
1b1 C b

�
2b2 D On1 C On2 (9.23)

commutes with all elements of the algebra g and thus is an invariant operator of
u.2/

C1.u.2// D ON: (9.24)

Powers of ON also commute with all elements of g and are thus also invariant
operators. The quadratic Casimir operator is usually defined as

C2 .u.2// D ON
� ON C 2

�
: (9.25)

The basis is

B W 1p
n1Šn2Š

.b
�
2/
n2 .b

�
1/
n1 j 0 i � jn1; n2i : (9.26)

Since n2 D N � n1, this can be rewritten as

1
p
n1Š.N � n1/Š

�
b
�
2

�N�n1 �
b
�
1

�n1 j0i : (9.27)

The dimension of the irreducible representations is N C 1:

Example 2. The two dimensional harmonic oscillator in quantum mechanics

The algebra u.2/ can be used to describe the two-dimensional harmonic oscillator
in (dimensionless) Cartesian coordinates, x and y. The creation and annihilation
operators are related to coordinates and momenta by

b1 D 1p
2
.x C ipx/ ; b

�
2 D 1p

2
.x � ipx/

b2 D 1p
2

�
y C ipy

�
; b

�
2 D 1p

2

�
y � ipy

�
: (9.28)

The Hamiltonian of the isotropic oscillator is

H D 1

2

�
p2x C x2 C p2y C y2

�
: (9.29)

It can be rewritten in terms of elements of u.2/ as

H D ON C 1 (9.30)



130 9 Boson Realizations

with eigenvalues

E.N/ D N C 1; N D 0; 1; : : : (9.31)

Because of these properties, the algebra u.2/ is called the degeneracy algebra of the
two dimensional harmonic oscillator.

Subalgebra II: u.2/ � so.2/
It is convenient to introduce the operators

OFC D b
�
1b2 ;

OF� D b
�
2b1 ;

so.2/
‚ …„ ƒ
OFz D 1

2
.b
�
2b2 � b

�
1b1/

„ ƒ‚ …
su.2/

; ON D b
�
2b2 C b

�
1b1: (9.32)

The operators OFC; OF�; OFz satisfy the commutation relations of su.2/ in the Cartan-
Weyl form

h OFC; OF�
i

D 2 OFzI
h OFz; OF˙

i
D ˙ OF˙: (9.33)

To make connection with the usual form, introduce

OFx D 1

2
Œb
�
1b2 C b

�
2b1�I OFy D 1

2i
Œb
�
1b2 � b

�
2b1�: (9.34)

The operators OFx; OFy; OFz satisfy the usual commutation relations

h OFx; OFy
i

D i OFzI
h OFy; OFz

i
D i OFx I

h OFz; OFx
i

D i OFy: (9.35)

The invariant Casimir operator is

OF 2 D OF 2
x C OF 2

y C OF 2
z D 1

2
. OFC OF�C OF� OFC/C OF 2

z D OF� OFCC OFz . OFzC1/: (9.36)

This operator commutes with all elements

h OF 2; OF˙
i

D
h OF 2; OFz

i
D 0 (9.37)

and thus

OF 2 D C2.su.2//: (9.38)

When written in terms of boson operators
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OF 2 D 1

4
ON. ON C 2/ D 1

4
.b
�
2b2 C b

�
1b1/.b

�
2b2 C b

�
1b1 C 2/: (9.39)

The invariant OF 2 is related to that introduced previously in (9.25) by multiplication
by 1

4
. This factor is due to the definition of the operators OF .

The basis is written in bra-ket notation as

ˇ
ˇ̌
ˇ
ˇ
ˇ

u.2/ � so.2/
# #
N M

+

: (9.40)

The intermediate step su.2/ in the chain u.2/ � su.2/ � so.2/ may or may not be
written down, since, for totally symmetric (bosonic) representations, no additional
label (quantum number) is required when going from u.n/ to su.n/. Since one goes
from a unitary to an orthogonal algebra, the chain u.2/ � so.2/ is non-canonical.
The rules of Chap. 6 give the branching

M D ˙N; ˙.N � 2/; : : : ; ˙1 or 0;N D odd or even: (9.41)

Note the ˙ sign, which arises from the fact that so.2/ is an orthogonal algebra in
an even number of dimensions. The dimension of the representation is N C 1 (as
in Chain I). The basis can be converted to the standard form by introducing the
quantum numbers

F D N

2
; Fz D M

2
: (9.42)

In this form the branching is the familiar quantum mechanics result

Fz D �F; �F C 1; : : : ; F � 1; F: (9.43)

The dimension of the representation is .2F C 1/. The basis is written as

ˇ̌
ˇ
ˇ
ˇ
ˇ

su.2/ � so.2/
# #
F Fz

+

(9.44)

and can be constructed with boson operators as

jF;Fzi D
s

1

.F C Fz/Š.F � Fz/Š
.b
�
2/
FCFz .b

�
1/
F�Fz j0i : (9.45)

This construction of su.2/ is called the Jordan-Schwinger construction (Schwinger
1965).
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Note that, since u.1/ � so.2/, there is no difference between subalgebra chains I
and II. They can be converted into each other by

OFz D 1

2
. On2 � On1/ D

ON
2

� On1I Fz D N

2
� n1

Fz D N

2
;
N

2
� 1; : : : ;�N

2
D F; F � 1; : : : ; �F: (9.46)

The situation is summarized in the graph

u.2/
j

u.1/ � so.2/
(9.47)

called a lattice of algebras, a concept which will become clear in the following
sections.

The algebras u.2/ and su.2/ constructed with boson operators play a crucial role
in applications to problems in physics: (i) u.2/ is the degeneracy algebra of the
two dimensional harmonic oscillator; (ii) su.2/ � so.3/ is the angular momentum
algebra.

9.4 The Algebras u.n/; n � 3

Starting with u.3/, the possibility arises to have the angular momentum algebra
as subalgebra of u.n/. For applications to problems with rotational invariance, it
is convenient to introduce another form of the Lie algebra u.n/, called the Racah
form. This is obtained from the Lie algebra of (9.2) by a change of basis. The Racah
form can be constructed by introducing boson operators that transform as tensor
operators under so.3/. Since this is a generic method, it is of interest to provide a
general definition.

9.4.1 Racah Form

Introduce boson creation b�l;m and annihilation bl;m operators satisfying commuta-
tion relations

h
bl;m; b

�

l 0;m0

i
D ıll0ımm0

Œbl;m; bl 0 ;m0 � D
h
b
�

l;m; b
�

l 0;m0

i
D 0: (9.48)
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If the operators b�l;m satisfy the commutation relations (8.5) with the elements of
the algebra so.3/, the explicit expression of which is defined below, they transform
as spherical tensors of rank l under so.3/ rotations. In order to construct adjoint
operators that transform as spherical tensors under so.3/, one must use the results
of Chap. 8, Example 9. The operators b�l;m and Qbl;m,

b
�

l;mI Qbl;m D .�1/l�m bl;�m (9.49)

transform as spherical tensors.
The coupled bilinear products

G.k/



�
l; l 0

� �
h
b
�

l � Qbl 0
i.k/




D
X

m;m0

˝
lml0m0 j k
˛ b�l;m Qbl 0;m0 ; (9.50)

with jl C l 0j � k � jl � l 0j generate the Lie algebra u.n/. Here n D P
i .2li C 1/,

where li are the values of l used in the construction of the Lie algebra. The
commutation relations of the operatorsG.k/


 are

h
G.k/



�
l; l 0

�
; G

.k0/


0

�
l 00; l 000

�i D
X

k00;
00

.2k C 1/1=2
�
2k0 C 1

�1=2 ˝
k
k0
0 j k00
00˛

�
	
.�/lCl 000Ck00

�
l 0 l 000 k0
k00 k l

�
ıl 0l 00G

.k00/


00

�
l; l 000

�

� .�/l 0Cl 00CkCk0

�
l 00 l k0
k k00 l 0

�
ıll000G

.k00/


00

.l 00; l 0/


: (9.51)

This form of the algebra and of the commutation relations is known as Racah’s form
(Racah 1965).

9.4.2 Tensor Coupled Form of the Commutators

In deriving the preceding formula (9.51) and the corresponding formula for
fermions, discussed in Chap. 10, it is useful to introduce a tensor coupled form
of the commutators of the Lie algebras u.n/. The tensor commutator of two tensor
operatorsG.e/ and G.f / is defined by

�
G.e/; G.f /

�.g/
�

D
X

";'

he"f ' j g�i
h
G.e/
" ; G

.f /
'

i
: (9.52)



134 9 Boson Realizations

This
�
G.e/; G.f /

�.g/
is itself a tensor operator and, at the tensor level, can be written

as

�
G.e/; G.f /

�.g/ D .G.e/ �G.f //.g/ � .�/g�e�f .G.f / �G.e//.g/: (9.53)

The tensor coupled form of the commutator was introduced in French (1966) and
developed in Chen (1993)

The commutator formula for the generators of u.n/ can be written as

�
G.e/.a; b/; G.f /.c; d /

�.g/
�

D .�/aCdCg .�/2aC2dC2g Oe Of
�
b d f

g e a

�
ıbcG

.g/

� .a; d/

� .�/bCcCeCf .�/2cC2dC2g Oe Of
�
c a f

e g b

�
ıadG

.g/

� .c; b/;

(9.54)

where O| D .2j C 1/1=2, valid for a; b; c and d all integer (bosonic) or all half-
integer (fermionic). For the bosonic case .�/2aC2dC2g D .�/2cC2dC2g D C1, while
for the fermionic case, to be discussed in Chap. 10, .�/2aC2dC2g D .�/2cC2dC2g D
�1. The uncoupled commutators (9.51) can be obtained from (9.52) by multiplying
by the Clebsch-Gordan coefficient of so.3/; he"f ' j g�i, and summing over g and �

h
G.e/
" ; G

.f /
'

i
D
X

g;�

he"f ' j g�i �G.e/; G.f /
�.g/
�
: (9.55)

9.4.3 Subalgebra Chains Containing so.3/

A generic subalgebra chain (called a classification scheme) for u.2lC1/ constructed
with boson operators can be obtained as follows:

(i) Exclude the element with k D 0; 
 D 0; this gives su.2l C 1/:

(ii) Retain only elements with k Dodd; this gives so.2l C 1/:

(iii) Retain the elements with k D 1; this gives so.3/:
(iv) Retain the element with k D 1; 
 D 0; this gives so.2/.

A generic subalgebra chain for a single value of l is

u.2l C 1/ � su.2l C 1/ � so.2l C 1/

� : : : � so.3/ � so.2/: (9.56)

Dots have been inserted between so.2l C 1/ and so.3/ since, for large l , there may
be intermediate steps.
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9.5 The Algebras u.3/ and su.3/

To construct these algebras, one needs three boson operators b˛.˛ D 1; 2; 3/: The 9
elements of u.3/ are

g + b�˛bˇ .˛; ˇ D 1; 2; 3/ : (9.57)

The algebraic analysis of u.3/ encounters a new feature, namely that there are
here two subalgebra chains that are distinct (non-isomorphic), in contrast with the
previous case in which the subalgebra chains were isomorphic. While the first of
these chains, the canonical chain, can be studied as in Sect. 9.3, the second chain,
which includes the angular momentum algebra so.3/ as a subalgebra, is best studied
by introducing Racah form. In addition, several constructions of the same chain
are possible. We begin with the constructions mostly used in quantum mechanical
applications.

9.5.1 Subalgebra Chains

The Canonical Chain

Subalgebra I: u.3/ � u.2/ � u.1/
The canonical chain can be constructed by introducing three (singlet) boson

operators b1; b2; b3. The elements of the algebras in the chain are

u.3/ u.2/ u.1/
b
�
1b1 b

�
1b1 b

�
1b1

b
�
1b2; b

�
2b1 b

�
1b2; b

�
2b1

b
�
1b3; b

�
3b1

b
�
2b2 b

�
2b2

b
�
2b3; b

�
3b2

b
�
3b3

: (9.58)

The elements of u.2/ and u.1/ are obtained from u.3/ by deleting successively the
boson operators b3 and b2. The basis is

B W 1p
n1Šn2Šn3Š

.b
�
1/
n1 .b

�
2/
n2.b

�
3/
n3 j 0 i � jn1; n2; n3 i ; (9.59)

with

n1 C n2 C n3 D N: (9.60)
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The labels can be arranged in the usual Dirac ket-notation

ˇ
ˇ
ˇ̌
ˇ
ˇ

u.3/ � u.2/ � u.1/
# # #
N n n1

+

; (9.61)

with branching

n D 0; : : : ; N;

n1 D 0; : : : ; n: (9.62)

The Gel’fand pattern is

-N 0 0

n 0

n1

,

�
-n1 C n2 C n3 0 0

n1 C n2 0

n1

,

: (9.63)

The algebra has a linear invariant

C1.u.3// D ON D b
�
1b1 C b

�
2b2 C b

�
3b3; (9.64)

and higher order invariants, C2.u.3// and C3.u.3//, which are combinations of
powers of ON .

Example 3. The harmonic oscillator in three dimensions in Cartesian coordinates

The algebra of u.3/ and its canonical chain describe the harmonic oscillator
in three dimensions and in Cartesian coordinates. The dimensionless coordinates,
x; y; z, and momenta, px; py; pz, are related to the creation and annihilation
operators by

b1 D 1p
2
.x C ipx/ ; b

�
1 D 1p

2
.x � ipx/

b2 D 1p
2

�
y C ipy

�
; b

�
2 D 1p

2

�
y � ipy

�

b3 D 1p
2

�
z C ipz

�
; b

�
3 D 1p

2

�
z � ipz

�
: (9.65)

The Hamiltonian of the isotropic oscillator is

H D 1

2

�
p2x C p2y C p2z C x2 C y2 C z2

�
: (9.66)
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Its algebraic form is

H D
3X

iD1
b
�
i bi C 3

2
D ON C 3

2
; (9.67)

with eigenvalues

E.N/ D N C 3

2
; N D 0; 1; : : : : (9.68)

The eigenvalues depend only on the quantum numberN D n3Cn2 Cn1 and not on
the other quantum numbers n D n2 C n1 and n1. The canonical chain is also useful
to describe the anisotropic oscillator, with Hamiltonian

H D 1

2

�
p2x C p2y C p2z C !2xx

2 C !2yy
2 C !2z z2

�
(9.69)

and eigenvalues

E.n1; n2; n3/ D !xn1 C !yn2 C !zn3 C 3

2
;

n1; n2; n3 D 0; 1; : : : (9.70)

The algebra u.3/ is the degeneracy algebra of the three dimensional harmonic
oscillator.

The Non-Canonical Chain and its Racah Form

Subalgebra II: u.3/ � so.3/ � so.2/
In order to construct the non-canonical chain u.3/ � so.3/ � so.2/, it is

convenient to introduce spherical boson operators (tensor operators with respect to
so.3/)

p
�

˙1 D � 1p
2
.b
�
1 ˙ i b

�
2/; p

�
0 D b

�
3 (9.71)

denoted by p�	.	 D 0;˙1/ and their adjoint Qp	 D .�1/1�	 p�	. The three boson

operators p�	.	 D ˙1; 0/ transform as the representation l D 1 of so.3/. In the
generic construction of the elements of the algebra given in the preceding section,
there is thus only one value of l .
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The elements of u.3/ in Racah form are

G
.0/
0 .pp/ D .p� � Qp/.0/0 1

G
.1/

 .pp/ D .p� � Qp/.1/
 3

G
.2/

 .pp/ D .p� � Qp/.2/
 5

(9.72)

for a total of nine elements. The number of elements .2k C 1/ is written next to
them.

Subalgebras of u.3/ can be then constructed as follows: (i) deleting the element
G
.0/
0 gives su.3/. (ii) Keeping only the elements with k D 1 gives so.3/. (iii)

Keeping only G.1/
0 gives so.2/.

u.3/ su.3/ so.3/ so.2/

.p� � Qp/.0/0

.p� � Qp/.1/
 .p� � Qp/.1/
 .p� � Qp/.1/
 .p� � Qp/.1/0

.p� � Qp/.2/0 .p� � Qp/.2/0

: (9.73)

The basis can be written as

ˇ
ˇ
ˇ̌
ˇ
ˇ

u.3/ � so.3/ � so.2/
# # #
N L ML

+

: (9.74)

Using the rules of Chap. 6, one obtains the branching

L D N;N � 2; : : : ; 1 or 0 .N D odd or even/
ML D �L; : : : ;CL : (9.75)

Again the intermediate step su.3/ in u.3/ � su.3/ � so.3/ � so.2/ may or may
not be written down, since for symmetric representations no new quantum number
is needed when going from u.3/ to su.3/.

Example 4. The three dimensional harmonic oscillator in spherical coordinates

The chain u.3/ � so.3/ � so.2/ can be used to describe the harmonic oscillator
in spherical coordinates, r; #; '. These coordinates are related to the Cartesian
coordinates by the familiar relations x D r cos' sin# , y D r sin ' sin# , z D
r cos# . The Hamiltonian is still given by (9.66), written now as

H D 1

2

�
p2 C r2

�
: (9.76)
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The algebraic form of this Hamiltonian is still

H D ON C 3

2
; (9.77)

with eigenvalues

E.N/ D N C 3

2
; N D 0; 1; : : : (9.78)

The eigenstates, given in (9.74), can be written in the form

jN;L;MLi D 1

N
�
p�
�N
L;ML

j0i (9.79)

where the product of N operators p� is coupled to L and ML, and N is a
normalization constant.

9.5.2 Lattice of Algebras

The situation for the branchings of u.3/ can be summarized in the following lattice
of algebras

u.3/
� Ÿ

u.2/ so.3/
Ÿ �

u.1/ � so.2/

A2

� Ÿ
A1 B1

Ÿ �
D1

; (9.80)

where Cartan’s notation is used on the right-hand side. The lattice must be read from
top to bottom. (For bosonic systems (symmetric representations) no new quantum
number is needed when going from u.n/ to su.n/ and thus the right hand side
of (9.80) is written in terms of A2 � su.3/ and A1 � su.2/ instead of u.3/ and
u.2/).

9.5.3 Boson Calculus of u.3/ � so.3/

Spherical boson operators are extensively used in physics. It is therefore of interest
to develop a boson calculus, for manipulations of tensor operators with respect to
so.3/. The basic commutation relations are

Œp	; p
�

	0

� D ı		0 Œ Qp	; p�	0

� D .�1/1�	 ı	0;�	: (9.81)



140 9 Boson Realizations

The elements of the Lie algebra u.3/ can be explicitly constructed using (9.50). The

element
�
p� � Qp�.0/

0
is

Œp� � Qp�.0/0 D
X

	;	0

˝
1 	 1 	0 j 00 ˛p�	 Qp	0 D

D
X

	;	0

.�1/1�	 1p
3
ı	;�	0 p�	 Qp	0 D

X

	

.�/1�	 1p
3
p�	 Qp�	

D 1p
3

X

	

p�	 p	 D 1p
3

ON: (9.82)

This element is thus proportional to the number operator ON that counts the number
of bosons. The other elements are

�
p� � Qp�.k/



D
X

	;	0

h1	1	0 j k
ip�	 Qp	0 : (9.83)

An important ingredient is often the tensor product of two creation or annihilation
operators. The tensor product of two creation or annihilation operators can only have
even rank, � Deven.

Proof. Consider the product

Œp� � p��.�/	 D
X

	1	2

h1	1 1	2 j �	 i p�	1 p�	2 D

D
X

	1	2

h1	1 1	2 j �	 i p�	2 p�	1 D
X

	1	2

h1	2 1	1 j �	 i p�	1 p�	2

D
X

	1	2

.�/2�� h1	1 1	2 j �	 i p�	1 p�	2 : (9.84)

Equating the first and last term one finds

.�/2�� D 1I � D even D 0; 2: (9.85)

The elements of the algebra u.3/ � so.3/ are often denoted by

ON D p
3Œp� � Qp�.0/0

OL
 D p
2Œp� � Qp�.1/


OQ
 D Œp� � Qp�.2/


: (9.86)
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In applications to the harmonic oscillator problem in quantum mechanics, ON
represents the number operator that counts the oscillator quanta. The explicit
expression for the components OL
 is

OL0 D
�
p
�
C1 Qp�1 � p

�
�1 QpC1

�
;

OL�1 D �
�
p
�
�1 Qp0 C p

�
0 Qp�1

�
;

OLC1 D
�
p
�
0 QpC1 C p

�
C1 Qp0

�
: (9.87)

With the normalization (9.86), the three components OL
 of the operator OL satisfy
the commutation relations of angular momentum

Œ OL0; OL˙1� D ˙ OL˙1 ; Œ OL�1; OLC1� D OL0: (9.88)

Proof. The commutator
h OL�1; OLC1

i
is

2Œ.p� � Qp/�.1/�1; .p
� � Qp/.1/C1� D �Œp��1 Qp0 C p

�
0 Qp�1; p�0 QpC1 C p

�
C1 Qp0� D

D �.p��1 QpC1 � p
�
C1 Qp�1/

D p
2.p� � Qp/.1/0 D OL0: (9.89)

The last operator, OQ, is a tensor operator of rank 2 (quadrupole tensor).

9.5.4 Matrix Elements of Operators in u.3/ � so.3/

Boson calculus is used to evaluate matrix elements of operators. The basis is written
as

B W jN;L;MLi D 1

N .p�/NL;ML
j 0i; (9.90)

where the N boson operators have been coupled to L;ML. There are no missing
labels here. An explicit expression in terms of solid harmonics in p� is also available
(van Roosmalen 1982).

Reduced matrix elements of the boson operators in this basis are

˝
N C 1;L � 1 k p� k N;L˛ D Œ.N � LC 2/L�1=2

˝
N C 1;LC 1 k p� k N;L˛ D Œ.N C LC 3/.LC 1/�1=2 : (9.91)
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The reduced matrix elements of the annihilation operators can be obtained by using
the relation

h˛0; L0 k Qbl k ˛;Li D .�1/L�L0Cl h˛;L k b�l k ˛0; L0i; (9.92)

where ˛ denotes additional labels. The matrix elements of the elements of the
algebra are

D
N;L;ML j ON j N;L;ML

E
D N (9.93)

and
D
N;L k OL k N;L

E
D ŒL .LC 1/ .2LC 1/�1=2

D
N;L k OQ k N;L

E
D .2N C 3/

	
L.LC 1/ .2LC 1/

6.2L � 1/.2LC 3/


1=2

D
N;LC 2 k OQ k N;L

E
D
	
.N �L/ .N C LC 3/.LC 1/.LC 2/

.2LC 3/


1=2
: (9.94)

Matrix elements of polynomials in the elements of the algebra can be obtained by
using the reduction formulas of Chap. 8.

9.5.5 Tensor Calculus of u.3/ � so.3/

An alternative way to calculate matrix elements of operators is making use of tensor
calculus. The three boson creation operators p�˙1; p0 transform under u.3/ as the
three-dimensional representation Œ1; 0; 0� (or .1; 0/ of su.3/). They also transform
as the representation L D 1 under so.3/, with component 
 D ˙1; 0. A commonly
used notation for these tensors is

T
Œ1;0;0�
1;
 � �; (9.95)

that is the creation operator transform as the fundamental representation of u.3/,
often denoted as a particle. The boson annihilation operators Qp˙1; Qp0 transform
instead as the three-dimensional conjugate representation Œ1; 1; 0� (or .1; 1/ of
su.3/),

T
Œ1;1;0�
1;
 � �

� : (9.96)

This is often denoted as an antiparticle (or hole).
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The elements of the algebra, that is the bilinear products .p� � Qp/.k/
 , can be
simply obtained by taking tensor products, as in Chap. 6,

� ˝ �
� D � �

� ˚
�
�
�

: (9.97)

The representations on the right hand side contain

Œ2; 1; 0� ˚ Œ1; 1; 1�

# #
�
p� � Qp�.1/




�
p� � Qp�.0/




�
p� � Qp�.2/




: (9.98)

The dimensions are: dim Œ2; 1; 0� D 8; dimŒ1; 1; 1� D 1 for a total of 9 elements.
Note that the elements of the algebra do not transform as its fundamental repre-
sentation. Under reduction of u.3/ to su.3/, the representation Œ2; 1; 0� becomes
.2; 1/ with dim .2; 1/ D 8, while the representation Œ1; 1; 1� becomes .0; 0/ with
dim .0; 0/ D 1.

The calculation of matrix elements of a generic tensor T

D
Œn0; 0; 0�; L0; M 0

L j T Œn1;n2;n3�k; 
 j Œn; 0; 0�; L; ML

E
(9.99)

is done using the techniques of Chap. 6.
The algebra u.3/ (and its subalgebra su.3/) constructed with boson operators

occupy a special role in physics since u.3/ is the degeneracy algebra of the three-
dimensional harmonic oscillator.

9.5.6 Other Boson Constructions of u.3/

In addition to the construction in terms of boson operators b1; b2; b3 (canonical
chain) and in terms of vector bosons, p	.	 D ˙1; 0/, there is another boson
construction of u.3/ of practical interest. This construction is in terms of a singlet
boson, � , and a doublet �x; �y . The doublet can be rewritten as

�˙ D 1p
2

�
�x ˙ i�y

�

�
�

˙ D 1p
2

�
��x � i��y

�
: (9.100)
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The boson operators �˙ are called circular boson operators. The algebra u.3/ is
composed of nine elements:

On D
�
�
�
C�C C �����

�

Ol D
�
�
�
C�C � �����

�

OQC D p
2
�
�
�
C��

�

OQ� D p
2
�
����C

�

Ons D �
���

�

ODC D p
2
�
�
�
C� � ����

�

OD� D p
2
������ C ���C

�

ORC D p
2
�
�
�
C� C ����

�

OR� D p
2
�
���� C ���C

�
: (9.101)

This construction has two possible subalgebra chains (as before).
Subalgebra chain I: u.3/ � u.2/ � so.2/
The subalgebra u.2/ is composed by the four operators

u.2/ + On; Ol ; OQC; OQ�: (9.102)

The subalgebra so.2/ is composed of a single operator

so.2/ + Ol : (9.103)

The basis states in this chain are characterized by the quantum numbers

ˇ
ˇ̌
ˇ
ˇ
ˇ

u.3/ � u.2/ � so.2/
# # #
N n l

+

; (9.104)

with branching rules

n D N;N � 1; : : : ; 0I
l D ˙n;˙.n � 2/; : : : ;˙1 or 0 .n D odd or even/ : (9.105)

Subalgebra chain II: u.3/ � so.3/ � so.2/
The subalgebra so.3/ is composed by the three operators
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so.3/ + ODC; OD�; Ol : (9.106)

The subalgebra so.2/ is composed by the single operator Ol as in (9.103).
The basis states in this chain are characterized by the quantum numbers

ˇ
ˇ
ˇ̌
ˇ
ˇ

u.3/ � so.3/ � so.2/
# # #
N ! l

+

; (9.107)

with branchings

! D N;N � 2; : : : ; 1 or 0 .N D odd or even/I
�! � l � C!: (9.108)

For this subalgebra chain, a difficulty arises, since there are two so.3/ algebras
contained in the u.3/ algebra of (9.101). The first is given by (9.106). The second,
denoted by so.3/, is composed of the operators

so.3/ + ORC; OR�; Ol : (9.109)

Basis states and branchings for so.3/ are similar to those of so.3/.
In view of the isomorphism so.2/ � u.1/, the lattice of algebras for this

construction is identical to that given previously in (9.80).
The construction of u.3/ in terms of a singlet and a doublet has practical appli-

cations in the study of vibration-rotation spectra of molecules in two-dimensions
(bending vibrations) (Iachello and Oss 1996).

9.6 The Unitary Algebra u.4/

This algebra can be constructed by considering four boson operators, b˛; ˛ D
1; 2; 3; 4. The 16 elements of the algebra are

G˛ˇ + b�˛bˇ: (9.110)

9.6.1 Subalgebra Chains not Containing so.3/

The Canonical Chain

The canonical chain u.4/ � u.3/ � u.2/ � u.1/ can be constructed trivially as
before in terms of four boson operators b1; b2; b3; b4. No more will be said about
this chain.
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The Doublet Chain

Another chain that can be constructed simply is that in which the boson operators are
divided into two doublets, b1; b2 and b3; b4. The bilinear products of creation and
annihilation operators of each doublet generate a u.2/ algebra (Jordan-Schwinger
construction), Sect. 9.2. Denoting by u1.2/ and u2.2/ the two u.2/ algebras, one has
the chain u.4/ � u1.2/˚ u2.2/. From there on, one can use the results of Sect. 9.2.
The complete subalgebra chain is u.4/ � u1.2/˚ u2.2/ � so1.2/˚ so2.2/:

The situation can be summarized in the lattice of algebras

u.4/
� Ÿ

u.3/ u1.2/˚ u2.2/
j j

u.2/ so1.2/˚ so2.2/
j

u.1/

: (9.111)

9.6.2 Subalgebra Chains Containing so.3/

We consider here explicitly non-canonical chains that contain the angular momen-
tum algebra so.3/ as a subalgebra. These are particularly important in problems
with rotational invariance and will be discussed here in detail. These chains can be
constructed by introducing scalar, s�, and vector, p�	 .	 D 0;˙1/, boson operators
that transform as l D 0 and l D 1 under so.3/,

l D 0 W s�
l D 1 W p�	 .	 D 0;˙1/ : (9.112)

(Although not necessary for the construction of the algebra, in applications in
molecular physics the parity of these operators is chosen to be P D .�1/l .) The
elements of u.4/ are, in Racah form,

G
.0/
0 .ss/ D .s� � Qs/.0/0 1

G
.0/
0 .pp/ D .p� � Qp/.0/0 1

G
.1/

 .pp/ D .p� � Qp/.1/
 3

G
.2/

 .pp/ D .p� � Qp/.2/
 5

G
.1/

 .ps/ D .p� � Qs/.1/
 3

G
.1/

 .sp/ D .s� � Qp/.1/
 3

; (9.113)
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for a total of 16 elements. To this algebra the standard procedure of (i) constructing
all possible subalgebra chains; (ii) constructing the Casimir invariants and their
eigenvalues; (iii) constructing the basis B; is then applied.

Subalgebras

There are two subalgebra chains that contain so.3/:

Subalgebra I: u.4/ � u.3/ � so.3/ � so.2/
The elements of the subalgebras and their numbers are

u.3/ W
.p� � Qp/.0/0 1

.p� � Qp/.1/
 3

.p� � Qp/.2/
 5

so.3/ W
.p� � Qp/.1/
 3

so.2/ W
.p� � Qp/.1/0 1

(9.114)

Subalgebra II : u.4/ � so.4/ � so.3/ � so.2/
The elements of the subalgebras and their numbers are

so.4/ W
.p� � Qp/.1/
 3

.p� � Qs/.1/
 C .s� � Qp/.1/
 3

so.3/ W
.p� � Qp/.1/
 3

so.2/ W
.p� � Qp/.1/0 1

: (9.115)

For this subalgebra chain, a difficulty arises, similar to that discussed in the
previous Sect. 9.5, as there are two so.4/ algebras that can be constructed with the
bilinear products of s and p boson operators. The second so.4/ algebra, denoted
by so.4/ is composed of the following operators

so.4/ W
�
p� � Qp�.1/



3

i
h�
p� � Qs�.1/



� �
s� � Qp�.1/




i
3

so.3/ W
�
p� � Qp�.1/



3

so.2/ W
�
p� � Qp�.1/

0
1

: (9.116)
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These two possibilities are due to an inner automorphism of the Lie algebra
so.4/.

Invariant Operators

In addition to the algebras, it is of interest to construct also its invariant (Casimir)
operators. In Racah form, the invariant operators satisfy

ŒC;G.k/

 � D 0 for any k; 
: (9.117)

The explicit form of some of the invariant operators is:

(a) Linear operators
Only unitary u.n/ algebras have linear invariants. They are, for u.4/,

C1.u.4// D G
.0/
0 .ss/C p

3G
.0/
0 .pp/ D Ons C Onp D ON: (9.118)

and, for u.3/,

C1.u.3// D p
3G

.0/
0 .pp/ D Onp: (9.119)

(b) Quadratic operators
The quadratic Casimir operators of u.n/ can be simply constructed as the

square of the linear invariants. It has become customary to use as invariant
operators

C2.u.4// D ON. ON C 3/ (9.120)

and

C2.u.3// D Onp. Onp C 2/ (9.121)

which also commute with all elements of their respective algebras.

The quadratic invariants of so.n/, can be written in terms of the elementsG.k/ as

C2.so.3// D G.1/.pp/ 	G.1/.pp/: (9.122)

and

C2.so.4// D G.1/.pp/ 	G.1/.pp/C �
G.1/.ps/CG.1/.sp/

� 	 �G.1/.ps/CG.1/.sp/
�

(9.123)

The dot product denotes scalar products with respect to so.3/, defined in Chap. 8,
Sect. 8.13. A short-hand notation, often used, is
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Ons D .s� � Qs/.0/0

Onp D p
3.p� � Qp/.0/0

OL D p
2.p� � Qp/.1/


OQ D .p� � Qp/.2/


OD D .p� � Qs C s� � Qp/.1/


OD0 D i.p� � Qs � s� � Qp/.1/


: (9.124)

In addition to the number operators Ons and Onp , there are the angular momentum
operator OL, the quadrupole operator OQ and two (hermitian) dipole operators OD
and OD0. (In quantum mechanical applications these operators are related to the
coordinate and momentum vectors.) In the notation (9.124), the invariants take a
simple and familiar form

C2.so.3// D OL 	 OL C2.so.4// D OL 	 OLC OD 	 OD: (9.125)

Branchings

A crucial problem for application of Lie algebraic methods to problems in physics
and chemistry is the classification (or branching) problem. This problem is solved
using the techniques developed in Chap. 6.

Branching I
The branching of the totally symmetric representations of u.4/ for the chain

u.4/ � u.3/ � so.3/ � so.2/ is

u.4/ Œf1; f2; f3; f4� ŒN � D
N�times
‚ …„ ƒ
� : : :� � ŒN; 0; 0; 0�

u.3/ Œf 0
1 ; f

0
2 ; f

0
3 � Œnp� D

np�times
‚ …„ ƒ
� : : :� � Œnp; 0; 0�

np D 0; 1; : : : ; N

so.3/ .	0
1/ .L/

L D np; np � 2; : : : ; 1 or 0 .N D odd or even/

so.2/ .	00
1 / .ML/

ML D �L; : : : ;CL

: (9.126)
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The abstract characterization of the representations of the algebras u.n/; so.n/, of
Chap. 6, has been replaced here by quantum numbers with physical meaning: N is
the total boson number, np is the number of p bosons, L is the angular momentum
and ML is its z-component. This branching is in part canonical, u.4/ � u.3/ and
so.3/ � so.2/ and in part non-canonical, u.3/ � so.3/. The basis is labelled by the
quantum numbers

ˇ
ˇ
ˇ̌
ˇ
ˇ

u.4/ � u.3/ � so.3/ � so.2/
# # # #
N np L ML

+

: (9.127)

Branching II
For the chain u.4/ � so.4/ � so.3/ � so.2/, the branching is

u.4/ Œf1; f2; f3; f4� ŒN � D
N�times
‚ …„ ƒ
� : : :� � ŒN; 0; 0; 0�

so.4/ .	1; 	2/ .!; 0/

! D N; N � 2; : : : ; 1 or 0 .N D odd or even/

so.3/ .	0
1/ .L/

L D !;! � 1; : : : ; 1; 0

so.2/ .	00
1 / .ML/

ML D �L; : : : ;CL

: (9.128)

The basis is labelled by the quantum numbers

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.4/ � so.4/ � so.3/ � so.2/
# # # #
N ! L ML

+

: (9.129)

The branching u.4/ � so.4/ is non-canonical while the branching so.4/ � so.3/ �
so.2/ is canonical.

Eigenvalues of Casimir Operators

The eigenvalues of the Casimir operators in the appropriate irreducible representa-
tions can be obtained using the rules of Chap. 7. For the unitary algebras u.4/ and
u.3/ they are trivially given by

hŒN � j C1.u.4// j ŒN �i D N

hŒN � j C2.u.4// j ŒN �i D N.N C 3/
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˝�
np
� j C1.u.3// j �np

�˛ D np
˝�
np
� j C2.u.3// j �np

�˛ D np.np C 2/: (9.130)

For the orthogonal algebras so.4/ and so.3/ they are given by

h.!; 0/ j C2.so.4// j .!; 0/i D !.! C 2/

h.L/ j C2.so.3// j .L/i D L.LC 1/: (9.131)

These eigenvalues differ from those of Table 7.1 by a factor of 2, due to the different
definition of C given above. Also, note that the eigenvalues of the Casimir operators
of an algebra g depend only on the labels of g and not on those of the subalgebra
chain g � g0 � g00 � : : :.

Lattice of Algebras

The non-canonical chains discussed above can be depicted into a lattice of algebras

u.4/
� Ÿ

u.3/ so.4/
Ÿ �

so.3/
j

so.2/

A3

� Ÿ
A2 D2

Ÿ �
B1

j
D1

: (9.132)

Cartan’s notation with A3 � su.4/; A2 � su.3/ is used on the right hand side, for
reasons discussed in the paragraph following (9.80). The portion of the branching
which ends at so.3/ � B1

A3
� Ÿ

A2 D2

Ÿ �
B1

; (9.133)

for the representation ŒN � D Œ4� is displayed in Fig. 9.1, route I (left) and route II
(right). The algebra u.4/ constructed with s and p bosons is known as the vibron
algebra (Iachello and Levine 1995). An account of the vibron algebra is also given
in Frank and van Isacker (1994).
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0 2 4
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1
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0 4321
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1
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a b

Fig. 9.1 Branchings of the representation Œ4� of u.4/. (a) Branching u.4/ 	 u.3/ 	 so.3/ with
labels np and L. (b) Branching u.4/ 	 so.4/ 	 so.3/ with labels ! and L. The total number of
states on the left is equal to the total number on the right

9.7 The Unitary Algebra u.6/

This algebra can be constructed by means of six boson operators, b˛; ˛ D 1; : : : ; 6.
The 36 elements of the algebra are

G˛ˇ + b�˛bˇ ˛; ˇ D 1; : : : ; 6: (9.134)

9.7.1 Subalgebra Chains not Containing so.3/

The Canonical Chain

The canonical chain u.6/ � u.5/ � u.4/ � u.3/ � u.2/ � u.1/ is trivial.

The Vector Chain

The algebra u.6/ can be constructed with two vector boson operators, p�1	 and p�2	,
leading to the chain u.6/ � u1.3/ ˚ u2.3/. The algebras u1.3/ and u2.3/ can then
be decomposed as in Sect. 9.4.

9.7.2 Subalgebra Chains Containing so.3/

Of particular interest for applications are the chains that can be constructed
with a scalar and a quadrupole boson operator. These chains contain the angular
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momentum algebra so.3/. The boson operators s� and d�	 transform as the represen-
tation l D 0 and l D 2 of so.3/

l D 0 W s�

l D 2 W d�	.	 D 0;˙1;˙2/: (9.135)

The elements of the algebra u.6/ in Racah form are

G
.0/
0 .ss/ D .s� � Qs/.0/0 1

G
.0/
0 .dd/ D .d � � Qd/.0/0 1

G
.1/

 .dd/ D .d � � Qd/.1/
 3

G
.2/

 .dd/ D .d � � Qd/.2/
 5

G
.3/

 .dd/ D .d � � Qd/.3/
 7

G
.4/

 .dd/ D .d � � Qd/.4/
 9

G
.2/

 .ds/ D .d � � Qs/.2/
 5

G
.2/

 .sd/ D .s� � Qd/.2/
 5

(9.136)

for a total of 36 operators. The standard procedure is then applied to this algebra.

Subalgebras

The algebra of u.6/ has three subalgebra chains that contain the angular momentum
algebra so.3/:

Subalgebra I: u.6/ � u.5/ � so.5/ � so.3/ � so.2/
The elements of the subalgebras are

u.5/ W
.d � � Qd/.0/0 1

.d � � Qd/.1/
 3

.d � � Qd/.2/
 5

.d � � Qd/.3/
 7

.d � � Qd/.4/
 9

so.5/ W
�
d� � Qd

�.1/



3

�
d� � Qd

�.3/



7

so.3/ W
�
d� � Qd

�.1/



3

so.2/ W
�
d� � Qd

�.1/

0
1

(9.137)
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Subalgebra II: u.6/ � su.3/ � so.3/ � so.2/
The elements of the subalgebras are

u.3/ W
.s� � Qs/.0/0 C p

5.d� � Qd/.0/0 1

.d � � Qd/.1/
 3

.d � � Qs C s� � Qd/.2/
 C
p
7
2
.d � � Qd/.2/
 5

su.3/ W
.d � � Qd/.1/
 3

.d � � Qs C s� � Qd/.2/
 C
p
7
2
.d � � Qd/.2/
 5

so.3/ W
.d � � Qd/.1/
 3

so.2/ W
.d � � Qd/.1/0 1

: (9.138)

This chain is doubled by the inner automorphism of u.3/, with u.3/ given by

u.3/ W
�
s� � Qs�.0/

0
C p

5
�
d� � Qd

�.0/

0
1

�
d� � Qd

�.1/



3

�
d� � Qs C s� � Qd

�.2/



�

p
7
2

�
d� � Qd

�.2/



5

: (9.139)

In applications to nuclear physics, the algebras u.3/ and u.3/ are usually called
the prolate and oblate algebras.

Subalgebra III: u.6/ � so.6/ � so.5/ � so.3/ � so.2/
The elements of the subalgebras are

so.6/ W
.d � � Qd/.1/
 3

.d � � Qd/.3/
 7

.d � � Qs C s� � Qd/.2/
 5

so.5/ W
.d � � Qd/.1/
 3

.d � � Qd/.3/
 7

so.3/ W
.d � � Qd/.1/
 3

so.2/ W
.d � � Qd/.1/0 1

(9.140)
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Again this chain is doubled by the inner automorphism of so.6/, with so.6/
given by

so.6/ W
�
d� � Qd

�.1/



3

�
d� � Qd

�.3/



7

i
�
d� � Qs � s� � Qd

�.2/



5

: (9.141)

Invariant Operators

Invariant Casimir operators for all algebras included in the chains of the previous
subsection can be constructed explicitly.

a) Linear operators

i) u.6/

C1.u.6// D G
.0/
0 .ss/C p

5G
.0/
0 .dd/ D .s� � s/.0/0 C p

5.d� � Qd/.0/0
D Ons C Ond � ON (9.142)

ii) u.5/

C1.u.5// D p
5.d� � Qd/.0/0 D Ond (9.143)

iii) u.3/

C1.u.3// D ON: (9.144)

b) Quadratic operators
For the unitary algebras u.6/; u.5/ and u.3/ the quadratic Casimir operators

can be taken to be

C2.u.6// D ON. ON C 5/

C2.u.5// D Ond . Ond C 4/

C2.u.3// D ON. ON C 2/: (9.145)
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For the orthogonal algebras appearing in the branchings of u.6/ described in this
section, they are

i) so.3/

C2.so.3// D G.1/ 	G.1/ (9.146)

with G.1/

 � G

.1/

 .dd/. Introducing the angular momentum operator OL
 Dp

10G
.1/

 , this can be rewritten as C2.so.3// D 1

10
OL 	 OL. (The dot denotes

scalar products.)
ii) so.5/

C2.so.5// D G.1/ 	G.1/ CG.3/ 	G.3/ (9.147)

with G.1/

 as before and G.3/


 � G
.3/

 .dd/.

For the special unitary algebra su.3/ appearing in the branching of u.6/,
they are

iii) su.3/

C2 .su.3// D G.1/ 	G.1/ C 4

15
QG.2/ 	 QG.2/; (9.148)

where

QG.2/

 D G.2/


 .ds/CG.2/

 .sd/�

p
7

2
G.2/

 .dd/; (9.149)

If, in addition to the angular momentum operator OL, one introduces the
quadrupole operator OQ D p

8 QG.2/, the Casimir operator of su.3/ can be
rewritten as

C2.su.3// D 1

30

h
3 OL 	 OLC OQ 	 OQ

i
: (9.150)

Branchings

Branching I
The branching of representations of u.6/ into representations of its subalgebra

present a challenge not encountered when dealing with u.n/, n � 4. One needs a
hidden quantum number to characterize uniquely the basis. Finding this quantum
number is one of the most difficult problems in algebraic theory. The branching
u.6/ � u.5/ � so.5/ � so.3/ � so.2/ is
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u.6/ ŒN � �
N�times
‚ …„ ƒ
�� : : :� � ŒN; 0; 0; 0; 0; 0�

u.5/ Œnd � �
nd�times
‚ …„ ƒ
�� : : :� � Œnd ; 0; 0; 0; 0� nd D N;N � 1; : : : ; 0

so.5/ .v/ � .v; 0/ v D nd ; nd � 2; : : : ; 1 or 0
.nd D odd or even/

so.3/ L Algorithm 1

so.2/ ML �L � ML � CL
(9.151)

The step from so.5/ to so.3/ is non-canonical and thus requires the development of
an algorithm to find the values of L contained in each representation nd .

Algorithm 1. Partition nd as

nd D 2nˇ C 3n� C � (9.152)

where

nˇ D .nd � v/=2I nˇ D 0; 1; : : : ;
nd

2
or
nd � 1

2
: (9.153)

Then

L D �; �C 1; �C 2; : : : ; 2� � 2; 2�: (9.154)

[Note that 2� � 1 is missing!]. The additional quantum number n� D 0; 1; : : :

is a missing label (hidden quantum number) needed to characterize uniquely the
decompositions of representations of so.5/ into representations of so.3/. This gives
Table 9.1.

The complete classification for branching I is

ˇ
ˇ
ˇ
ˇ
ˇ̌

u.6/ � u.5/ � so.5/ � so.3/ � so.2/
# # # # #
N nd v; n� L ML

+

: (9.155)

The total number of labels, including the missing label n�, is six.
Branching II
The branching u.6/ � su.3/ � so.3/ � so.2/ is
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Table 9.1 Decomposition of totally symmetric repre-
sentations of u.6/ 	 u.5/ into representations of so.3/

u.6/ 	 u.5/ 	 so.5/ 	 so.3/

N nd v n� L

0 0 0 0 0

1 0 0 0 0

1 1 0 2

2 0 0 0 0

1 1 0 2

2 2 0 4, 2

0 0 0

3 0 0 0 0

1 1 0 2

2 2 0 4, 2

0 0 0

3 3 0 6, 4, 3

1 0

1 0 2

u.6/ ŒN � �
N�times
‚ …„ ƒ
�� : : :� � ŒN; 0; 0; 0; 0; 0�

su.3/ .� ; 	/ Algorithm 2

so.3/ L Algorithm 3

so.2/ ML �L � ML � CL

: (9.156)

Here, the so-called Elliott quantum numbers, � D f1�f2; 	 D f2, are used instead
of the entries in the Young tableau .f1; f2/ in order to conform with commonly used
notation. Both steps from u.6/ to su.3/ and from su.3/ to so.3/ are non-canonical.
The step from su.3/ to so.3/ is not fully reducible.

Algorithm 2. The algorithm to find the values of .�; 	/ contained in ŒN � is

.2N; 0/˚ .2N � 4; 2/˚ : : : ˚
�
.0;N /

.2;N � 1/

N D even
N D odd

�
˚

˚.2N � 6/˚ .2N � 10; 2/˚ : : : ˚
�
.0;N � 3/
.2;N � 4/

N � 3 D even
N � 3 D odd

�
˚

˚.2N � 12; 0/˚ .2N � 16; 2/˚ : : : ˚
�
.0;N � 6/

.2;N � 7/

N � 6 D even
N � 6 D odd

�
˚

˚ : : :

:

(9.157)

Algorithm 3. The algorithm to find the values of L contained in .�; 	/ is

L D K;K C 1;K C 2; : : : ; .K C max f�;	g/ (9.158)
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Table 9.2 Decomposition of totally symmetric
representations of u.6/ 	 su.3/ into representa-
tions of so.3/

u.6/ 	 su.3/ 	 so.3/

N .�; 	/ K L

0 .0; 0/ 0 0

1 .2; 0/ 0 2; 0

2 .4; 0/ 0 4; 2; 0

.0; 2/ 0 2; 0

3 .6; 0/ 0 6; 4; 2; 0

.2; 2/ 0 2; 0

2 2; 3; 4

.0; 0/ 0 0

where

K D integer D minf�;	g;minf�;	g � 2; : : : ; 1 or 0 (9.159)

with exception of K D 0 for which

L D maxf�;	g;maxf�;	g � 2; : : : ; 1 or 0. (9.160)

Here K is the missing label. This gives Table 9.2.

The complete classification for branching II is

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.6/ � su.3/ � so.3/ � so.2/
# # # #
N .�; 	/ K L ML

+

: (9.161)

Again, a total of six labels is needed.
Branching III
The branching u.6/ � so.6/ � so.5/ � so.3/ � so.2/ is

u.6/ ŒN � �
N�times

‚ …„ ƒ
�� : : :� � ŒN; 0; 0; 0; 0; 0�

so.6/ � � .�; 0; 0/ � D N;N � 2; : : : ; 1or0

.N D odd or even/
so.5/ � � .�; 0/ � D �; � � 1; : : : ; 0

so.3/ L Algorithm 4

so.2/ ML �L � ML � CL

: (9.162)
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Table 9.3 Decomposition of totally symmetric
representations of u.6/ 	 so.6/ into representa-
tions of so.3/

u.6/ 	 so.6/ 	 so.5/ 	 so.3/

N � � �� L

0 0 0 0 0

1 1 1 0 2

0 0 0

2 2 2 0 4; 2

1 0 2

0 0 0

0 0 0 0

3 3 0 6; 4; 3

1 0

2 1 4; 2

1 0 2

0 0 0

1 1 0 2

0 0 0

Algorithm 4. The algorithm to find the values of L contained in each representa-
tion � is: Partition � as

� D 3�� C �; �� D 0; 1; : : : (9.163)

and take

L D 2�; 2� � 2; : : : ; �C 1; �: (9.164)

[Note again that 2� � 1 is missing!]. The missing label is here ��.
This gives Table 9.3.

The complete classification for branching III is

ˇ
ˇ
ˇ
ˇ
ˇ̌

u.6/ � so.6/ � so.5/ � so.3/ � so.2/
# # # # #
N � �; v� L ML

+

(9.165)

with six quantum numbers as before.
In all three chains, the total number of labels needed to characterize uniquely the

totally symmetric representations of u.6/ is six, as one can see by considering the
Gel’fand pattern
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n1 0 0 0 0 0

n2 0 0 0 0

n3 0 0 0

n4 0 0

n5 0

n6

: (9.166)

Eigenvalues of Casimir Operators

The eigenvalues of Casimir operators in the representations labeled by the quantum
numbers of the previous subsection are

hŒN � j C1.u.6// j ŒN �i D N

hŒN � j C2.u.6// j ŒN �i D N.N C 5/

hŒnd � j C1.u.5// j Œnd �i D nd

hŒnd � j C2.u.5// j Œnd �i D nd .nd C 4/

h.�; 	/ j C2.su.3// j .�; 	/i D �2 C 	2 C �	C 3�C 3	

h.�; 0; 0/ j C2.so.6// j .�; 0; 0/i D �.� C 4/

h.�; 0/ j C2.so.5// j .�; 0/i D �.� C 3/

h.L/ j C2.so.3// j .L/i D L.LC 1/:

(9.167)

Lattice of Algebras

The lattice of algebras is

u.6/
� j Ÿ

u.5/ so.6/ su.3/
Ÿ �

so.5/ �
Ÿ

so.3/
j

so.2/

A5
� j Ÿ

A4 D3 A2
Ÿ �
B2 �
Ÿ

B1
j
D1

: (9.168)

Again, on the right hand side, Cartan notation Al � su.l C 1/, is used [see (9.80)].
The algebra of u.6/ constructed with s and d bosons is known as the interacting

boson model algebra (Iachello and Arima 1987). An account of the interacting
boson model algebra is also given in Frank and van Isacker (1994).
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9.8 The Unitary Algebra u.7/

In the previous sections, the unitary algebras u.1/; u.2/; : : : ; u.6/ have been con-
structed with bilinear products of boson operators b�˛bˇ . Unitary algebras u.n/ with
n > 6 can be constructed in a similar way. In this section, as a last example of
an explicit boson construction, the algebra u.7/ will be considered. This algebra is
composed of the 49 elements

G˛ˇ + b�˛bˇ .˛; ˇ D 1; 2; : : : ; 7/ : (9.169)

The algebra u.7/ is interesting for two reasons: (i) It is the unitary algebra of lowest
rank that contains as a subalgebra one of the exceptional algebras, g2, and (ii) it
has applications to the three-body problem in quantum mechanics. The subalgebra
chains that describe these two situations are discussed in the following subsections.

9.8.1 Subalgebra Chain Containing g2

This chain can be constructed by introducing an octupole boson f � that transforms
as the representation l D 3 of so.3/

l D 3: f �
	 .	 D 0;˙1;˙2;˙3/: (9.170)

The elements of the algebra u.7/ in Racah form are

G
.0/
0 .ff / D

�
f � � Qf

�.0/

0
1

G
.1/

 .ff / D

�
f � � Qf

�.1/



3

G
.2/

 .ff / D

�
f � � Qf

�.2/



5

G
.3/

 .ff / D

�
f � � Qf

�.3/



7

G
.4/

 .ff / D

�
f � � Qf

�.4/



9

G
.5/

 .ff / D

�
f � � Qf

�.5/



11

G
.6/

 .ff / D

�
f � � Qf

�.6/



13

; (9.171)

for a total of 49 elements.



9.8 The Unitary Algebra u.7/ 163

Subalgebra I: u.7/ � so.7/ � g2 � so.3/ � so.2/
The elements are:

so.7/ W
�
f � � Qf

�.k/



k D 1; 3; 5 21

g2I �
f � � Qf

�.k/



k D 1; 5 14

so.3/ W
�
f � � Qf

�.1/



3

so.2/ W
�
f � � Qf

�.1/

0
1

: (9.172)

Branching

The branching of representations ŒN � of u.7/ is

u.7/ ŒN � � ŒN; 0; 0; 0; 0; 0; 0�

so.7/ ! � .!; 0; 0/ ! D N;N � 2; : : : ; 1 or 0 (N D odd or even)

g2 � � .�; 0/ Racah algorithm

so.3/ L Racah algorithm

so.2/ ML �L � ML � CL

:

(9.173)

The steps so.7/ � g2 and g2 � so.3/ are non-canonical and involve the exceptional
group g2. The Racah algorithm gives Table 9.4. The algorithm can be found in
Racah (1949). Note that for bosonic representations the algebra g2 does not provide
any new label and the multiplicities must be resolved by additional missing labels.
(The algebra g2 will be also discussed in Chap. 10 for fermionic systems for which
it provides new labels.)
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Table 9.4 Decomposition of totally symmetric representations of u.7/ 	
so.7/ into representations of so.3/

u.7/ 	 so.7/ 	 g2 	 so.3/

N ! � L

0 0 0 0

1 1 1 3

2 2 2 6; 4; 2

0 0 0

3 3 3 9; 7; 6; 5; 4; 3; 1

1 1 3

4 4 4 12; 10; 9; 82; 7; 62; 52; 4; 32; 2; 1

2 2 6; 4; 2

0 0 0

9.8.2 The Triplet Chains

These chains can be constructed with two triplet vector bosons, b��;m .m D 0;˙1/ ;
b
�

�;m .m D 0;˙1/ and a scalar boson s�, generically denoted c�˛ .˛ D 1; : : : ; 7/

l D 1 W b��;m .m D 0;˙1/
l D 1 W b

�

�;m .m D 0;˙1/ (9.174)

l D 0 W s�

together with the corresponding annihilation operators c˛ .˛ D 1; : : : ; 7/ (Bijker
et al. 1994a). These chains are important in the study of the three-body problem in
quantum mechanics. The subscript �; � that distinguishes the two vector bosons is
used to indicate that these vector bosons represent the second quantized form of the
Jacobi variables �; � that characterize the geometric configuration of a three-body
system. The Jacobi variables are defined in terms of the coordinates of the three
particles r1; r2; r3 as � D 1p

2
.r1 � r2/ and � D 1p

6
.r1 C r2 � 2r3/. The bilinear

products

G˛˛0 + c�˛c˛0

�
˛; ˛0 D 1; : : : ; 7

�
(9.175)

generate u.7/. The basis states are written as

B W 1

N
�
b��

�n� �
b
�

�

�n� �
s�
�N�n��n� j0i ; (9.176)
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where N is a normalization constant. The Racah form of u.7/ is obtained by
introducing the operators

Qb�;m D .�1/1�m b�;�m
Qb�;m D .�1/1�m b�;�m

Qs D s : (9.177)

It can be written as

Ons D �
s� � Qs� 1

OD�;	 D
�
b
�
� � Qs � s� � Qb�

�.1/

	
3

OD�;	 D
�
b
�

� � Qs � s� � Qb�
�.1/

	
3

OA�;	 D i
�
b
�
� � Qs C s� � Qb�

�.1/

	
3

OA�;	 D i
�
b
�

� � Qs C s� � Qb�
�.1/

	
3

OG.`/
S;	 D

�
b
�
� � Qb� C b

�

� � Qb�
�.`/

	
9

OG.`/
A;	 D i

�
b
�
� � Qb� � b�� � Qb�

�.`/

	
9

OG.`/
M�;	

D
�
b
�
� � Qb� C b

�

� � Qb�
�.`/

	
9

OG.`/
M�;	

D
�
b
�
� � Qb� � b

�

� � Qb�
�.`/

	
9

(9.178)

with ` D 0; 1; 2. This form is not the usual Racah form of the algebra in which
the bilinear products are only angular momentum coupled. In applications to the
many-body problem, especially in quantum chemistry, it is useful to assign to the
creation and annihilation operators properties under transformations of a discrete
group. The most important property is parity, where the transformation is inversion
of the coordinates ri ! �ri . The two boson operators b�� and b�� are assumed to
be odd under parity, while the operator s� is assumed to be even. (In general, in
this chapter, the parity P of the boson operators b�l;m is assumed to be .�1/l .) For
applications to the three-body problem, it is convenient to assign to the elements of
the algebra definite transformation properties under permutation of the three-bodies.
The boson operators s�; b��;m; b

�

�;m are assumed to transform under the transposition
P.12/ as

P.12/

0

B
@
s�

b
�
�;m

b
�

�;m

1

C
A D

0

@
1 0 0

0 �1 0
0 0 1

1

A

0

B
@
s�

b
�
�;m

b
�

�;m

1

C
A ; (9.179)
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and under the cyclic permutation P.123/ as

P.123/

0

B
@
s�

b
�
�;m

b
�

�;m

1

C
A D

0

@
1 0 0

0 cos .2�=3/ sin .2�=3/
0 � sin .2�=3/ cos .2�=3/

1

A

0

B
@
s�

b
�
�;m

b
�

�;m

1

C
A : (9.180)

The permutation group S3 is a six element discrete group which is isomorphic to
the dihedral group D3. In order to characterize the transformation properties of the
elements of the algebra (and of the states) one can use the label of either group,
given by

S3 D3

S � � � � A1

M � � �
� E

A �
�
�
�

A2

: (9.181)

This notation is used in (9.178). The construction of bosonic algebras with definite
transformation properties under discrete groups is discussed in Bijker and Leviatan
(1994b).

Subalgebras II

Since the number of elements of u.7/ is relatively large, there are several possible
subalgebra chains, four of which are included here.

Subalgebra II.1
This is the chain

u.7/ � u.6/ � so.6/ � so�.3/˚ so�.3/ � so.3/ � so.2/: (9.182)

States in this chain are characterized by the quantum numbers

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.7/ � u.6/ � so.6/ � so�.3/ ˚ so�.3/ � so.3/ � so.2/
# # # # # # #
N n � L� L� L ML

+

(9.183)
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with branching

u.7/ N � ŒN; 0; 0; 0; 0; 0; 0�

u.6/ n � Œn; 0; 0; 0; 0; 0� n D N;N � 1; : : : ; 0
so.6/ � � .�; 0; 0/ � D n; n � 2; : : : ; 1 or 0 (n=odd or even)

so�.3/˚ so�.3/ L�; L� Algorithm 5

so.3/ L
ˇ
ˇL� �L�

ˇ
ˇ � L � ˇ

ˇL� C L�
ˇ
ˇ

so.2/ ML �L � ML � CL

:

(9.184)

Algorithm 5. The values of L� and L� are obtained by partitioning � as

� D 2� C L� C L� with � D 0; 1; : : : (9.185)

Subalgebra II.2
This is the chain

u.7/ � so.7/ � so.6/ � so�.3/˚ so�.3/ � so.3/ � so.2/: (9.186)

States in this chain are characterized by

ˇ
ˇ
ˇ
ˇ
ˇ̌

u.7/ � so.7/ � so.6/ � so�.3/ ˚ so�.3/ � so.3/ � so.2/
# # # # # # #
N ! � L� L� L ML

+

; (9.187)

with branching

u.7/ N � ŒN; 0; 0; 0; 0; 0; 0�

so.7/ ! � .!; 0; 0/ ! D N;N � 2; : : : ; 1 or 0

so.6/ � � .�; 0; 0/ � D !;! � 1; : : : ; 0

so�.3/˚ so�.3/ L�; L� Algorithm 5

so.3/ L
ˇ
ˇL� �L�

ˇ
ˇ � L � ˇ

ˇL� C L�
ˇ
ˇ

so.2/ ML �L � ML � CL

:

(9.188)
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Subalgebras III

Two other subalgebra chains have been used extensively in hadronic physics (three-
quark system) (Bijker and Leviatan 1994b).

Subalgebra III.1
This is the chain

u.7/ � u�.3/˚ u�.4/ � u�.3/˚ u�.3/ � so�.3/˚ so�.3/ � so.3/ � so.2/:
(9.189)

States in this chain are characterized by the quantum numbers

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

u.7/ � u�.3/˚ u�.4/ � u�.3/˚ u�.3/ � so�.3/˚ so�.3/
# # # # #
N n� n� L� L�

� so.3/ � so.2/
# #
L ML

+

; (9.190)

with branching

u.7/ N � ŒN; 0; 0; 0; 0; 0; 0�

u�.3/˚ u�.3/
n� � .n�; 0; 0/

n� � .n�; 0; 0/

n� D 0; 1; : : : ; N

n� D 0; 1; : : : ; N � n�

so�.3/˚ so�.3/
L�
L�

L� D n�; n� � 2; : : : ; 1 or 0
L� D n�; n� � 2; : : : ; 1 or 0

so.3/ L
ˇ
ˇL� �L�

ˇ
ˇ � L � ˇ

ˇL� C L�
ˇ
ˇ

so.2/ ML �L � ML � CL

:

(9.191)
Subalgebra III.2
This is the chain

u.7/ � u�.3/˚ u�.4/ � u�.3/˚ so�.4/ � so�.3/˚ so�.3/ � so.3/ � so.2/:
(9.192)
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States in this chain are characterized by the quantum numbers

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

u.7/ � u�.3/˚ u�.4/ � u�.3/˚ so�.4/ � so�.3/˚ so�.3/
# # # # #
N n� ! L� L�

� so.3/ � so.2/
# #
L ML

+

; (9.193)

with branching

u.7/ N � ŒN; 0; 0; 0; 0; 0; 0�

u�.3/˚ so�.4/
n� � �

n�; 0; 0
�

! � .!; 0/

n� D 0; 1; : : : ; N

! D N � n�;N � n� � 2; : : : ; 1 or 0

so�.3/˚ so�.3/
L�
L�

L� D n�; n� � 2; : : : ; 1 or 0
L� D 0; 1; : : : ; !

so.3/ L
ˇ
ˇL� �L�

ˇ
ˇ � L � ˇ

ˇL� C L�
ˇ
ˇ

so.2/ ML �L � ML � CL

:

(9.194)

Lattice of Algebras

The lattice of algebras for the chains discussed above is

u.7/
� Ÿ

so.7/ u.6/
Ÿ �

so.6/
j

so�.3/˚ so�.3/
j

so.3/
j

so.2/
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and

u.7/
j

u�.3/˚ u�.4/
� Ÿ

u�.3/˚ u�.3/ u�.3/˚ so�.4/
Ÿ �

so�.3/˚ so�.3/
j

so.3/
j

so.2/

: (9.195)

Note that the two lattices merge at the level of so�.3/˚ so�.3/ (Iachello 1995).

9.9 Contractions of Bosonic Algebras

The bosonic realizations of the Lie algebras u.n/ of (9.2) with commutation
relations (9.3) are well suited for constructing contracted Lie algebras. These
contracted algebras are particularly useful in quantum mechanics.

9.9.1 The Heisenberg Algebra h.2/

We begin by considering the algebra u.2/ constructed with two boson operators
.s; t/ � b˛.˛ D 1; 2/ satisfying the commutation relations (9.1). The elements of
u.2/ can be written as

OF� D s�t; OFC D t�s; Ont D t�t; Ons D s�s: (9.196)

Now replace s and s� by
p
N , and consider the operators

OF�p
N

D t;
OFCp
N

D t�; Ont D t�t;
Ons
N

D 1: (9.197)

The set of operators t; t�; t�t; 1, form an algebra, called the Heisenberg algebra h.2/,
with commutation relations

�
t; t�

� D 1;
�
t�; 1

� D 0; Œt; 1� D 0;
�
t; t�t

� D t;
�
t�; t�t

� D �t�: (9.198)
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The algebra h.2/ has a subalgebra u.1/ composed of the single element t�t ,

h.2/ � u.1/; (9.199)

and it is the contracted algebra of u.2/

u.2/ !c h.2/: (9.200)

The three elements t; t� and 1 also form an algebra, called the quantum mechanical
algebra in one dimension, q.1/. The origin of this name can be seen by introducing
a coordinate, x, and momentum, px D 1

i
d
dx , realization of the boson operators

t D 1p
2
.x C ipx/ ; t� D 1p

2
.x � ipx/ ; (9.201)

or, conversely,

x D 1p
2

�
t C t�

�
; px D 1p

2
i
�
t� � t

�
: (9.202)

The elements of the Heisenberg algebra h.2/ in terms of coordinate and momentum
are

x; ipx; 1; x2 C p2x: (9.203)

Similarly, the elements of the quantum mechanical algebra q.1/ are

x; ipx; 1 (or x; px; i ) (9.204)

whose commutation relations are those of the basic commutation relations of
quantum mechanics, (1.3),

Œx; ipx� D �1 (or Œx; px� D i ). (9.205)

9.9.2 The Heisenberg Algebra h.n/, n D Even

These algebras can be easily constructed by introducing boson operators in the
Racah form and splitting them into a scalar boson, s, and a tensor boson operator,
bl .l D 0; 1; 2; : : :/. The case l D 0 is the case discussed in the previous subsection.
We construct here explicitly the case of u.4/, which leads to the contracted algebra
h.4/ and to the quantum mechanical algebra q.3/. We begin by introducing the
boson operators (9.112) with l D 0 .�/ and l D 1

�
�	;	 D 0;˙1;˙2�. Here Greek

letters are used not to confuse boson operators with the momentum p. The elements
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of u.4/ in Racah form are given in (9.113). We now replace �; �� by
p
N obtaining

the operators

G
.0/
0 .��/ =N D 1

G
.0/
0 .��/ D �

�� � Q��.0/
0

G.1/

 .��/ D �

�� � Q��.1/



G.2/

 .��/ D �

�� � Q��.2/



G.1/

 .��/ =

p
N D �

��
�.1/



G.1/

 .��/ =

p
N D . Q�/.1/
 : (9.206)

The 16 operators

1; ��; Q�; �
�� � Q��.k/ .k D 0; 1; 2/ (9.207)

form a contracted Lie algebra, called the Heisenberg algebra h.4/. This algebra has
the subalgebra chain

h.4/ � u.3/ � so.3/ � so.2/: (9.208)

Instead of the operators 1; ��; Q�; ��� � Q��.k/ ; one can also consider the set of oper-

ators 1;
�
�� C Q�� ; i ��� � Q�� ; ��� � Q��.k/, that is, one could do the contraction on

the operators OD and OD0 of (9.124).
Introducing coordinates, r, and momenta, p, in three-dimensions,

� D 1p
2
.r C ip/ , �� D 1p

2
.r � ip/ ; (9.209)

the algebra h.4/ can be rewritten as composed of

r; p; 1;
�
r2 C p2

�
; .r � p/.1/ D OL; .r � r C p � p/.2/ D OQ. (9.210)

From this form, one can see that among the elements of the Heisenberg algebra h.4/
there are the coordinates, the momenta, the angular momentum and the quadrupole
tensor. The quantum mechanical algebra q.3/ is simply composed of r;p; 1.

A similar procedure can be used to construct the Heisenberg algebra h.6/ and
the associated quantum mechanical algebra in five-dimensions, q.5/. One starts
from the boson operators l D 0 .s/ and l D 2

�
d	; 	 D 0;˙1;˙2� of (9.135).

The Heisenberg algebra h.6/ is composed of the 36 operators
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1; d �; Qd;
�
d� � Qd

�.k/
.k D 0; 1; 2; 3; 4/: (9.211)

Introducing coordinates and momenta
�
q	; p	

�
.	 D 0;˙1;˙2/, one obtains the

quantum mechanical algebra composed of q	; p	; 1.



Chapter 10
Fermion Realizations

10.1 Fermion Operators

In Chap. 9 a realization of Lie algebras in terms of boson operators has been given.
These operators have been used either in connection with coordinates and momenta,
as in harmonic oscillator problems, see Chap. 9, Examples 1, 2 and 3, or as operators
which create or annihilate particles with integer values of the angular momentum
l D 0; 1; : : :. In the 1920s, it became evident that particles exist with half-integer
values of the angular momentum, j D 1

2
; 3
2
; : : :. These particles are called fermions.

For applications to physics, it is of interest to consider realizations of Lie algebras in
terms of fermion operators. In view of the pervasive presence in physics of particles
with half-integer spin, most notably electrons and nucleons, fermion realizations
have become an important part of Lie algebraic methods. These will be discussed in
this chapter.

We begin by introducing an operation called anticommutator, denoted by a curly
bracket, f; g. The anticommutator of two quantities X; Y is

fX; Y g D XY C YX: (10.1)

The anticommutator is sometimes denoted by Œ; �C. In this book, the curly bracket

notation will be used. We then introduce fermion creation, a�i , and annihilation, ai ,
operators, satisfying anticommutation relations,

n
ai ; a

�

i 0

o
D ıii0 I fai ; ai 0g D

n
a
�
i ; a

�

i 0

o
D 0: (10.2)

These operators are the key ingredient in the construction.
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10.2 Lie Algebras Constructed with Fermion Operators

Lie algebras can be constructed from bilinear products of fermion creation and
annihilation operators

g + Aik D a
�
i ak .i; k D 1; : : : ; n/; (10.3)

as in the previous case of boson operators. The elementsAik satisfy the commutation
relations of the unitary algebra u.n/ [and gl.n/]

ŒAik; Ast� D Ait ıks � Ask ıit: (10.4)

A basis can be constructed by acting with the creation operators on a vacuum state
j0i. This basis will be denoted by F .

F W 1

N a
�
i a
�

i 0 : : : j0i : (10.5)

In contrast with the case of boson operators which generate totally symmetric
representations, the irreducible representations of u.n/ generated by acting with
fermion operators on j0i are the totally antisymmetric representations, with Young
tableau

�
�
:::

�

9
>>>=

>>>;

NF : (10.6)

For u.n/ the Young tableau has n entries. The totally antisymmetric representations
have NF entries 1 and n �NF entries 0

n

fNF g � Œ
‚ …„ ƒ
1; 1; : : : ; 1„ ƒ‚ …; 0; ::; 0�: (10.7)

NF

The short-hand notation fNF g is often used to denote these representations. The
zeros are usually not written, except for the identity representation Œ0; 0; : : : ; 0� �
Œ0�. The basis F is often called a Fermi–Dirac basis. Since any Lie algebra is
a subalgebra of gl.n/ it can be constructed with bilinear products of fermion
operators.
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10.3 Racah Form

While in the case of bosons both the uncoupled and coupled (Racah) form of the
Lie algebra have been extensively used, in the case of fermions only the Racah form
has been to a large extent used, and will be considered in this book. The Racah form
of the Lie algebra can be obtained by introducing fermion operators that transform
as representations jj;mi of spin.3/ � spin.2/; with j Dhalf-integer. We use here
spin.3/ and spin.2/ instead of so.3/ and so.2/, since we need to consider explicitly
spinor representations. The corresponding creation and annihilation operators will
be denoted by

a
�
j;m m D ˙ 1

2
;˙ 3

2
; : : : ;˙j

aj;m m D ˙ 1
2
;˙ 3

2
; : : : ;˙j : (10.8)

These operators satisfy anticommutation relations

n
aj;m; a

�

j 0;m0

o
D ıjj0 ımm0

˚
aj;m; aj 0;m0

� D
n
a
�
j;m; a

�

j 0;m0

o
D 0

: (10.9)

In constructing the Lie algebra it is convenient to introduce the operators

Qaj;m D .�1/j�m aj;�m (10.10)

that transform as tensors under spin.3/ � spin.2/. (An alternative definition is
with a phase .�1/jCm. This alternative definition introduces minus signs in some
formulas, but it does not alter the algebraic structure. Operators with physical
meaning constructed with creation and annihilation operators must be defined
accordingly. This problem does not arise for Racah boson realizations, since l and
m are integers.)

The Racah form of u.n/ is

g + A.�/	 .j; j
0/ D Œa

�
j � Qaj 0 �.�/	

D
X

m;m0

˝
jmj0m0j�	˛ a�j;m Qaj 0;m0 , (10.11)

with jj C j 0j � � � jj � j 0j and n D P
i .2ji C 1/. The commutation relations

are

h
A.�/	 .j; j

0/; A.�
0/

	0

.j 00; j 000/
i

D �
X

�00	00

�
.2�C 1/.2�0 C 1/

�1=2 ˝
�	�0	0 j �00	00˛
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�
	
.�/�00CjCj 000

�
� �0 �00
j 000 j j 0

�
� ıj 0j 00A

.�00/

	00

.j; j 000/

� .�/�C�0Cj 0Cj 00

�
� �0 �00
j 00 j 0 j

�
ıjj000A

.�00/

	00

.j 00; j 0/


: (10.12)

Note that, since j is half-integer, one can construct with fermion operators that
transform as representations of spin.3/ � spin.2/ only unitary algebras in an even
number of dimensions, a peculiarity of these realizations.

10.4 The Algebras u.2j C 1/

Consider a single value of j . There are .2j C 1/ values ofm. Thus n D 2jC1. With
this single value of j , we can construct the algebra u.2j C 1/. There are .2j C 1/2

elements in the algebra

A.�/	 .j; j / D Œa
�
j � Qaj �.�/	 : (10.13)

To the algebra u.2j C 1/ we can now apply the general procedure of constructing
subalgebras.

10.4.1 Subalgebra Chain Containing Spin.3/

A generic subalgebra chain (called a classification scheme) for u.2jC1/ constructed
with fermion operators can be obtained as follows:

1. Exclude the element with � D 0; 	 D 0; this gives su.2j C 1/.
2. Retain only terms with � Dodd; this gives the Lie algebra sp.2j C 1; C / �

sp.2j C 1/. Note that this situation is different from that of Lie algebras
constructed in terms of boson operators, since in that case, retaining terms with
� Dodd generates the orthogonal Lie algebras, so.2l C 1/.

3. Retain the term with � D 1; this gives the algebra spin.3/:
4. Retain the term with � D 1; 	 D 0; this gives the algebra spin.2/. A generic

subalgebra chain for single j is thus

u.2j C 1/ � su.2j C 1/ � sp.2j C 1/ � : : : � spin.3/ � spin.2/: (10.14)

Dots have been inserted between sp.2j C 1/ and spin.3/, since, for large j , there
may be intermediate steps (Flowers 1952).
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10.4.2 The Algebras u.2/ and su.2/: Spinors

Because of the pervasive presence in physics of particles with angular momentum 1
2
,

it is of great interest to construct explicitly the Lie algebra u.2/ in terms of fermion
operators with j D 1

2
, called spinors. The fermion creation operators are written as

a
�
1
2 ;C 1

2

, a
�
1
2 ;� 1

2

: (10.15)

An alternative notation, often found in books in condensed matter physics, is
a
�

" ; a
�

#, called spin up, and spin down notation.
The 4 elements of u.2/ are

A
.1/
	 .

1
2
; 1
2
/ D

h
a
�
1
2

� Qa1
2

i.1/

	
3

A
.0/
0 .

1
2
; 1
2
/ D

h
a
�
1
2

� Qa1
2

i.0/

0
1

: (10.16)

By deleting the element A.0/0 one obtains the subalgebra su.2/�sp.2/�spin.3/: By

considering only the element A.1/0 , one obtains the subalgebra spin.2/. The basis is

ˇ
ˇ
ˇ̌
ˇ
ˇ

u.2/ � su.2/ � spin.2/
# #
NF MJ

+

: (10.17)

Note that, for totally antisymmetric representations, no new quantum number is
introduced when going from u.2/ to su.2/�sp.2/. The elements of the Lie algebra
u.2/ constructed with spin 1

2
fermion operators have a straightforward physical

meaning. They are the total spin operator, OS , and the number operator for fermions,
ONF ;

OS	 D �
q

1
2

h
a
�

1=2 � Qa1=2
i.1/

	

ONF D �p
2
h
a
�

1=2 � Qa1=2
i.0/

0

: (10.18)

(The minus sign arises from the choice of phases in (10.10).) The only states of u.2/
that can be constructed with fermion operators are

� � Œ1� NF D 1

�
� � Œ1; 1� NF D 2

; (10.19)
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Table 10.1 Classification of anti-
symmetric states of u.2/

j D 1=2 u.2/ su.2/
Œ�1; �2� J

Œ0� 0

Œ1� 1=2

Œ1; 1� 0

in addition to the vacuum j0i that transforms as the identity representation Œ0�. This
property is known to physicists as Pauli principle. The classification of antisymmet-
ric states is rewritten, for comparison with the subsequent sections, as in Table 10.1.

The algebra of u.2/ constructed with fermion operators has had many applica-
tions in physics, and hence many different notations have been used to label the
states. Antisymmetric states of u.2/ have been labeled either by fNF g or by Œ�1; �2�.
The number of fermions, NF , is related to the labels Œ�1; �2� by

NF D �1 C �2: (10.20)

Also, in this case, in the general classification scheme of (10.14), all steps, except
the last one, coincide, since su.2/ � sp.2/ � spin.3/. Finally, either u.2/ or su.2/
can be used to classify the states, and the use of both the labels Œ�1; �2� of u.2/ and
the label J of su.2/ is redundant.

10.4.3 The Algebra u.4/

Another case of considerable interest is the case of j D 3
2
, n D 4. The 16 elements

of the algebra are

A
.3/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.3/

	
7

A
.2/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.2/

	
5

A
.1/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.1/

	
3

A
.0/
0 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.0/

0
1

: (10.21)

By deleting the element A.0/0 .
3
2
; 3
2
/ one obtains the subalgebra su.4/: By retaining

the 10 elements with � Dodd
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A
.3/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.3/

	
7

A
.1/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.1/

	
3

; (10.22)

one obtains the algebra of sp.4/. By retaining only the elements with � D 1

A
.1/
	 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.1/

	
3 (10.23)

one obtains the algebra of spin.3/ � su.2/. Finally by retaining only

A
.1/
0 .

3
2
; 3
2
/ D

h
a
�

3=2 � Qa3=2
i.1/

0
1 (10.24)

one obtains spin.2/: A basis for fermions with spin 3
2

is then

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.4/ � sp.4/ � su.2/ � spin.2/
# # # #
NF .n1; n2/ J MJ

+

: (10.25)

The values of n1; n2 are restricted by the branching rules and only one quantum
number is actually needed. The allowed states are

� � Œ1� NF D 1

�
� � Œ1; 1� NF D 2

�
�
�

� Œ1; 1; 1� NF D 3

�
�
�
�

� Œ1; 1; 1; 1� NF D 4

: (10.26)

The classification of antisymmetric states is given in Table 10.2.
The number NF is here
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Table 10.2 Classification of antisymmetric states of
u.4/

u.4/ sp.4/ su.2/

j D 3=2 Œ�1; �2; �3; �4� .n1; n2/ J

Œ0� .0; 0/ 0

Œ1� .1; 0/ 3=2

Œ1; 1� .0; 0/ 0

.1; 1/ 2

Œ1; 1; 1� .1; 0/ 3=2

Œ1; 1; 1; 1� .0; 0/ 0

NF D
4X

iD1
�i : (10.27)

10.4.4 The Algebra u.6/

This algebra can be constructed with j D 5
2
. The 36 elements have the form

A
.5/
	

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.5/

	
11

A
.4/
	

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.4/

	
9

A
.3/
	

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.3/

	
7

A
.2/
	

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.2/

	
5

A
.1/
	

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.1/

	
3

A
.0/
0

�
5
2
; 5
2

� D
h
a
�

5=2 � Qa5=2
i.0/

0
1

. (10.28)

Subalgebras of u.6/ can be constructed as in (10.14).
The basis F can be labeled by

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.6/ � sp.6/ � su.2/ � spin.2/
# # # #
NF .n1; n2; n3/ J MJ

+

: (10.29)
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Table 10.3 Classification of antisymmetric states of u.6/

u.6/ sp.6/ su.2/

j D 5=2 Œ�1; �2; �3; �4; �5; �6� .n1; n2; n3/ J

Œ0� .0; 0; 0/ 0

Œ1� .1; 0; 0/ 5=2

Œ1; 1� .0; 0; 0/ 0

.1; 1; 0/ 2; 4

Œ1; 1; 1� .1; 0; 0/ 5=2

.1; 1; 1/ 3=2; 9=2

Œ1; 1; 1; 1� .0; 0; 0/ 0

.1; 1; 0/ 2; 4

Œ1; 1; 1; 1; 1� .1; 0; 0/ 5=2

Œ1; 1; 1; 1; 1; 1� .0; 0; 0/ 0

The representations .n1; n2; n3/ of sp.6/ are restricted and only one quantum
number is needed to classify uniquely the states. The classification scheme is given
in Table 10.3. The representations of u.6/ are labelled here by their Young tableau
Œ�1; �2; �3; �4; �5; �6�. The number of fermionsNF is

NF D
6X

iD1
�i : (10.30)

Algebras with j > 5
2

and their classification scheme can be constructed in a
similar way.

10.4.5 Branchings of u.2j C 1/

For all representations of the previous subsections, one needs the branchings of
u.2j C 1/ into sp.2j C 1/ and of sp.2j C 1/ into su.2/. These branchings are
discussed in detail and tabulated for j � 7=2, in Hamermesh (1962).

10.5 The Algebra u
�P

i .2ji C 1/
�

A generalization of the construction given in the previous section, is the case when
there are several values of j . These situations occur in atomic and nuclear physics
where they are called mixed configurations. The construction is straightforward and
it produces the Lie algebra u.n/, with n D P

i .2ji C 1/. Note, however, once more,
that with fermion operators that transform as representations of spin.3/ � spin.2/
it is possible to construct only unitary algebras in an even number of dimensions.
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Example 1. The algebras u.6/ and u.12/

In the study of the spectroscopy of nuclei, one encounters situations in which the
values of j are j D 1

2
; 3
2

or j D 1
2
; 3
2
; 5
2
. The algebras constructed with these values

are u.6/ and u.12/ (Iachello and van Isacker 1991).

10.6 Internal Degrees of Freedom (Different Spaces)

10.6.1 The Algebras u.4/ and su.4/

One often encounters in physics particles with internal degrees of freedom. These
objects transform as representation jj;mi under spin.3/ � spin.2/, and as
representations of some internal symmetry group,G. A particularly interesting case
is that of protons and neutrons. These particles transform as j D 1

2
under spin.3/

and as t D 1
2

under another group called isospin.3/. The fermion creation operators
are, in a double index notation:

a
�
1
2 ;C 1

2 ;
1
2 ;C 1

2

p"
a
�
1
2 ;� 1

2 ;
1
2 ;C 1

2

p#
a
�
1
2 ;C 1

2 ;
1
2 ;� 1

2

n"
a
�
1
2 ;� 1

2 ;
1
2 ;� 1

2

n#

; (10.31)

generically denoted a
�
s;ms ;t;mt . The annihilation operators are as;ms ;t;mt . The 16

bilinear products of creation and annihilation operators form an algebra, called
Wigner u.4/. It is convenient to introduce the adjoint operators

Qas;ms; t; mt D .�/s�msCt�mt as;�ms; t;�mt ; (10.32)

that transform as tensors under spin and isospin rotations. The Racah form of Wigner
u.4/ is obtained in terms of double tensors

h
a
�
1
2 ;
1
2

� Qa1
2 ;
1
2

i.S;T /

.MS ;MT /
D

X

m;m0

mt ;mt0

h1
2
;ms;

1

2
;m0

s j S;MSi

�h1
2
;mt ;

1

2
;mt 0 j T;MT ia�1

2 ;ms;
1
2 ;mt

Qa1
2 ;m

0

s ;
1
2 ;m

0

t
(10.33)

with S D 0; 1 and T D 0; 1.
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Subalgebra Chain

Although a given algebra can be decomposed into several subalgebra chains,
as shown in the previous chapter for bosonic realizations, in practice physical
considerations dictate what subalgebra chains are of interest. For algebras with
internal degrees of freedom, the construction of subalgebra chains splits into two
categories: different spaces and same spaces. For different spaces, the internal
degrees of freedom are separated from the outset and not combined at any stage,
while for same spaces, they are combined at some stage into a single algebra,
whose elements are the sum of the elements of the two algebras. This procedure
is elucidated in the paragraphs below.

In the case of Wigner u.4/, spin and isospin live on different spaces, the physical
space and a fictitious isotopic spin space. It is assumed, on physical grounds, that
they cannot be combined, and the appropriate chain is u.4/ � su.4/ � suS .2/ ˚
suT .2/ � spinS .2/ ˚ spinT .2/: Here suS .2/ � spin.3/, suT .2/ � isospin.3/ and
the subscript S; T has been added to distinguish spin from isospin. The basis F for
Wigner u.4/ can then be written as

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.4/ � suS .2/˚ suT .2/ � spinS .2/˚ spinT .2/
# # #

Œ�1; �2; �3; �4� S; T MS;MT

+

: (10.34)

The full notation for the representations of u.4/ has been restored and the intermedi-
ate step su.4/ has been omitted, since no new quantum number appears. For a given
representation of u.4/, the branching problem can be solved using the techniques
of Chap. 6. The chain is non-canonical and requires a building-up process. It
has become customary to introduce another notation, called Wigner notation. In
this notation, one first goes from u.4/ to su.4/, using the rules of Chap. 6. The
representations of su.4/ are labeled by

�
�0
1; �

0
2; �

0
3

�
with

�0
1 D �1 � �4; �0

2 D �2 � �4; �0
3 D �3 � �4: (10.35)

The Wigner quantum numbers .P; P 0; P 00/ are defined as

�
P;P 0; P 00� D

�
�0
1 C �0

2 � �0
3

2
;
�0
1 � �0

2 C �0
3

2
;
�0
1 � �0

2 � �0
3

2

�
: (10.36)

The branching of representations of su.4/ into representations of suS.2/ ˚ suT .2/
can then be constructed (Hamermesh 1962). A portion of this branching is given in
Table 10.4. In the last column the dimension of the representations of su.4/ is shown.

10.6.2 The Algebras u.6/ and su.6/

In this case, particles still transform as j D 1
2

under spin.3/, but they now transform
as the fundamental representation Œ1� of an internal group suF .3/, called the flavor
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Table 10.4 Branching su.4/ 	 suS .2/˚ suT .2/

su.4/ 	 suS .2/˚ suT .2/

.P; P 0; P 00/ .S; T / dim.P; P 0; P 00/

.0; 0; 0/ .0; 0/ 1�
1
2
; 1
2
; 1
2

� �
1
2
; 1
2

�
4

.1; 1; 1/ .0; 0/; .1; 1/ 10
�
3
2
; 3
2
; 3
2

� �
1
2
; 1
2

�
;
�
3
2
; 3
2

�
20

group. The creation operators are denoted by a�u"; a
�

d"; a
�

s"; a
�

u#; a
�

d#; a
�

s#. The index
u; d; s stands for u; d; s quarks. The bilinear product of creation and annihilation
operators form a u.6/ algebra, called the Gürsey–Radicati algebra.

Subalgebra Chain

The breaking of u.6/ first proceeds to suF .3/ ˚ suS.2/. The algebra su.3/ can be
broken in various ways. The breaking appropriate to the physical situation described
by the Gürsey–Radicati algebra is suF .3/ � suT .2/˚ uY .1/, where T denotes the
isospin as before, and uY .1/ is an Abelian algebra called hypercharge (Y) algebra.
The subalgebra chain is thus u.6/ � su.6/ � suF .3/˚ suS .2/ � suT .2/˚ uY .1/˚
suS.2/ � spinT .2/˚ uY .1/˚ spinS .2/. The basis is labelled by

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

u .6/ � suF .3/ ˚ suS .2/ � suT .2/ ˚ uY .1/ ˚ suS .2/
# # # # #
Œ�� Œ	1; 	2� S T Y

� spinT .2/ ˚ uY .1/ ˚ spinS.2/
# #
T3 S3

+

: (10.37)

Here Œ�� D Œ�1; �2; �3; �4; �5; �6�. It has become customary to label the represen-
tations of suF .3/ not by their Young labels Œ	1; 	2� but by the dimension of the
representations, dim Œ0; 0� D 1; dim Œ2; 1� D 8, etc. and the representations of suS .2/
by their dimensions dimS D 2S C 1, put as a superscript, that is 28 denotes the
representation Œ2; 1�; S D 1

2
of suF .3/ ˚ sus.2/. The branching of representations

of u.6/ into representations of suF .3/ ˚ suS .2/ can be constructed (Gürsey and
Radicati 1964). A portion of this branching is given in Table 10.5. The conversion
between this notation and the standard notation for su.3/ representations used in
the preceding chapters is 1 � Œ0; 0�, 3 � Œ1; 0�, N3 � Œ1; 1�, 6 � Œ2; 0�, 8 � Œ2; 1�,
10 � Œ3; 0�. The general formula for the dimension of the representations of u.n/
is given in Chap. 6, Sect. 6.12. It is worth noting that with fermions with internal
degrees of freedom, it is possible to construct algebras in both even and odd number
of dimensions, in the present case suF .3/.
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Table 10.5 Branching su.6/ 	 suF .3/˚ suT .2/

su.6/ 	 suF .3/˚ suS .2/
Œ�1; �2; �3; �4; �5� .dim Œ	1; 	2� ; dimS/ dim Œ��

Œ0; 0; 0; 0; 0� .1; 1/ 1

Œ1; 0; 0; 0; 0� .3; 2/ 6

Œ1; 1; 1; 1; 1� .N3; 2/ 6

Œ1; 1; 0; 0; 0� .N3; 3/; .6; 1/ 15

Œ1; 1; 1; 0; 0� .8; 2/; .1; 4/ 20

Œ2; 0; 0; 0; 0� .6; 3/; .N3; 1/ 21

Œ2; 1; 1; 1; 1� .8; 3/; .8; 1/; .1; 3/ 35

Œ3; 0; 0; 0; 0� .10; 4/; .8; 2/ 56

Œ2; 1; 0; 0; 0� .10; 2/; .8; 4/; .8; 2/; .1; 2/ 70

10.7 Internal Degrees of Freedom (Same Space)

10.7.1 The Algebra u..2l C 1/.2s C 1//: L-S Coupling

Another case of interest is that of particles with both orbital, l Dinteger, and spin,
s Dhalf-integer, angular momentum. (The spin angular momentum is the internal
degree of freedom.) The corresponding creation and annihilation operators are

a
�

l ;ml ; s;ms

Qal ;ml ; s;ms D .�1/l�mlCs�ms al;�ml ; s;�ms
: (10.38)

The bilinear products

a
�

l;ml ;s;ms
Qal;m0

l ;s;m
0

s
(10.39)

generate the Lie algebra u ..2l C 1/ .2s C 1//.

Racah Form

The Racah form of the orbital-spin algebra is constructed with double tensors as in
the preceding section,

h
a
�

l;s � Qal;s
i.L;S/

ML;MS

D
X

ms;m
0

s

ml ;m
0

l

hl; ml; l; m
0
l j L;MLihs;ms; s;m

0
s j S;MSi

�a�l;ml ;s;ms Qal;m0

l ;s;m
0

s
: (10.40)
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The classification scheme for this algebra is

u ..2l C 1/ .2s C 1// � uL.2l C 1/˚ suS .2s C 1/ � : : :

� soL.3/˚ suS.2/ � spinJ .3/ � spinJ .2/; (10.41)

called L-S coupling. Since orbital and spin angular momentum are assumed to
act on the same space, they can be combined. Here spinJ .3/ denotes the algebra
whose elements are the sum of the elements of soL.3/ and suS .2/, sometimes
called the diagonal algebra. For large l , some intermediate steps are needed between
uL.2lC1/ and soL.3/ and the problem of missing labels becomes particularly acute
since the representations of uL.2l C 1/ that appear in (10.41) are not just one-row
representations as in the case of bosons. For this reason, dots have been inserted
in (10.41) between uL.2l C 1/ and soL.3/.

The representations of u..2l C 1/.2s C 1// that describe fermions are the
totally antisymmetric representations fNF g of (10.7) (one-column representations).
Racah showed that, in order to obtain totally antisymmetric representations of
u..2lC1/.2sC1//, the representations of uL.2lC1/ and suS.2sC1/must be dual
(sometimes called conjugate), that is obtained from each other by interchanging
columns with rows. Particularly interesting is the case of s D 1

2
that describes

electrons in atoms and nucleons in nuclei. In this case, the algebra is u.2.2lC1// �
uL.2lC1/˚suS.2/. The representations of suS .2/ are characterized by the quantum
numbers S;MS , and thus described by a Young tableau with two rows of length
.N=2/C S and .N=2/ � S . The representations of uL.2l C 1/ which arise in the
reduction of representations fNF g of u.2.2lC1//must then be described by a Young
tableau with two columns of these lengths.

Example 2. p electrons in atoms

In this case, l D 1 ; leading to the Lie algebra u.6/:The classification scheme is

u.6/ � uL.3/˚ suS.2/ � soL.3/˚ suS.2/ � spinJ .3/ � spinJ .2/: (10.42)

The branching of the representations of uL.3/ into those of soL.3/ has been
discussed in Chap. 6, Sect. 6.14. No additional subalgebra is needed.

Example 3. f electrons in atoms

In this case, l D 3, and the appropriate algebra is u.14/. This algebra has 196
elements. The classification scheme of (10.41) is

u.14/ � uL.7/˚ suS .2/ � : : : � soL.3/˚ suS .2/ � spinJ .3/ � spinJ .2/:
(10.43)

The classification scheme for the step uL.7/ � soL.3/ is incomplete. A complete
classification scheme was found by Racah and it is
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uL.7/ � soL.7/ � g2 � soL.3/ � soL.2/: (10.44)

This classification scheme occupies a special role in Lie algebraic methods in
physics since it was the first case in which an exceptional algebra, g2, appeared.
The elements of the algebras in (10.44) can be written easily in the double tensor
notation of (10.40). They are

u.7/ W
�
a� � Qa�.L;0/

ML;0
L D 0; 1; 2; 3; 4; 5; 6 49

su.7/ W
�
a� � Qa�.L;0/

ML;0
L D 1; 2; 3; 4; 5; 6 48

so.7/ W
�
a� � Qa�.L;0/

ML;0
L D 1; 3; 5 21

g2 W
�
a� � Qa�.L;0/

ML;0
L D 1; 5 14

so.3/ W
�
a� � Qa�.L;0/

ML;0
L D 1 3

so.2/ W
�
a� � Qa�.1;0/

ML;0
1

; (10.45)

where the indices l D 3; s D 1
2

have been omitted. States are characterized by

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.7/ � so.7/ � g2 � so.3/ � so.2/
# # # # #

Œ�1; : : : ; �7� Œ	1; 	2; 	3� Œ�1; �2� L ML

+

: (10.46)

For the application described in this example, the representations of u.14/ are
characterized by the number of electrons NF . The representations of suS .2/ are
characterized by the total spin S . For each NF and S the representations of u.7/ are
two-column representations with length .NF =2/ C S and .NF =2/ � S . Tables of
reduction for u.7/ � so.7/, so.7/ � g2, g2 � so.3/ can be found in Racah. Note
that the reduction u.7/ � so.7/ for fermionic representations is different from that of
bosonic representations given in Chap. 9. The same remark applies for the reduction
so.7/ � g2 and g2 � so.3/. The reduction so.7/ � g2 is given in Table 10.6.
The reduction g2 � so.3/ is given in Table 10.7. To complete the study of this
chain, one needs also to construct the Casimir invariants and their eigenvalues. The
construction is given in Racah. The general expression for the eigenvalues in the
representation Œ�1; �2� are

hC2.g2/i D �
�21 C �1�2 C �22 C 5�1 C 4�2

�
=12: (10.47)

(The factor of 12 comes from the definition ofC2.g2/.) A detailed account is given in
Racah (1949). Also, note again that with fermions with internal degrees of freedom
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Table 10.6 Reduction so.7/ 	 g2

so.7/ 	 g2

Œ	1; 	2; 	3� Œ�1; �2�

Œ0; 0; 0� Œ0; 0�

Œ1; 0; 0� Œ1; 0�

Œ1; 1; 0� Œ1; 0�; Œ1; 1�

Œ2; 0; 0� Œ2; 0�

Œ1; 1; 1� Œ0; 0�; Œ1; 0�; Œ2; 0�

Œ2; 1; 0� Œ1; 1�; Œ2; 0�; Œ2; 1�

Œ2; 1; 1� Œ1; 0�; Œ1; 1�; Œ2; 0�; Œ2; 1�; Œ3; 0�

Œ2; 2; 0� Œ2; 0�; Œ2; 1�; Œ2; 2�

Œ2; 2; 1� Œ1; 0�; Œ1; 1�; Œ2; 0�; Œ2; 1�; Œ3; 0�; Œ3; 1�

Œ2; 2; 2� Œ0; 0�; Œ1; 0�; Œ2; 0�; Œ3; 0�; Œ4; 0�

Table 10.7 Reduction g2 	 so.3/

g2 	 so.3/

Œ�1; �2� L

Œ0; 0� 0

Œ1; 0� 3

Œ1; 1� 1; 5

Œ2; 0� 2; 4; 6

Œ2; 1� 2; 3; 4; 5; 7; 8

Œ3; 0� 1; 3; 4; 5; 6; 7; 9

Œ2; 2� 0; 2; 4; 5; 6; 8; 10

Œ3; 1� 1; 2; 32; 4; 52; 62; 72; 8; 9; 10; 11

Œ4; 0� 0; 2; 3; 42; 5; 62; 7; 82; 9; 10; 12

it is possible to construct unitary algebras in odd number of dimensions, here u.7/.
Finally, L � S coupling plays a major role in the spectroscopy of atoms.

10.7.2 The Algebra u
�P

j .2j C 1/
�

: j -j Coupling

The orbital and spin angular momenta can be coupled from the outset. The
corresponding creation and annihilation fermion operators are

a
�

l;s;j;mj
I Qal;;s;j;mj D .�1/j�mj al;s;j;�mj ; (10.48)

with jl C sj � j � jl � sj. The bilinear products
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a
�

l;s;j;mj
Qal;s;j 0 ;m0

j

form the Lie algebra u.n/ with n D P
j .2j C 1/, as in Sect. 10.5. The Racah form

of the algebra and its branchings can be constructed (Iachello and van Isacker 1991).
Again here the case of interest is that in which s D 1

2
.

Example 4. p nucleons in nuclei

In this case, l D 1, and j D 1
2
; 3
2
, leading to the Lie algebra u.6/. The

classification scheme is

u.6/ � sp.6/ � spinJ .3/ � spinJ .2/: (10.49)

j -j coupling plays a major role in the spectroscopy of nuclei.

10.7.3 The Algebra u
��P

l .2l C 1/
�

.2s C 1/
�
: Mixed L-S

Configurations

In this case the orbital angular momentum l takes several values l1; l2; : : :. The
creation and annihilation operators are still given by (10.48), but the elements of
the Lie algebra are the bilinear products

a
�

l;ml ;s;ms
Qal 0 ;m0

l ;s;m
0

s
(10.50)

where l; l 0 take the values l1; l2; : : :. A particularly important case described by
this algebra is that of fermions with spin s D 1

2
moving in a harmonic oscillator

potential in three dimensions. As discussed in Chap. 9, Sect. 9.5.1, for N � 2

states of the three dimensional harmonic oscillator are degenerate with respect to
the angular momentum. For N D 2 the values of the orbital angular momentum
are l D 0; 2, for N D 3 they are l D 1; 3, etc. The algebra that describes
fermions in a given degenerate shell (a given value of N ), called Elliott algebra,
is u

��P
l .2l C 1/

�
.2s C 1/

�
(Elliott 1958).

Example 5. s-d nucleons in nuclei

In this case l D 0; 2 leading to the Lie algebra u.12/. The classification scheme
is

u.12/ � uL.6/˚ suS .2/ � suL.3/˚ suS .2/ � soL.3/˚ suS.2/

� spinJ .3/ � spinJ .2/. (10.51)

Mixed L-S configurations play a major role in the spectroscopy of light nuclei.



Chapter 11
Differential Realizations

11.1 Differential Operators

Lie algebras can also be constructed with differential operators acting on a space of
derivable functions f .x/ of the coordinate x. The basic commutation relations are

	
x;
d

dx



D x

d

dx
� d

dx
x D �1: (11.1)

11.2 Unitary Algebras u.n/

The bilinear products of coordinates, xi .i D 1; : : : ; n/; and their derivatives,
@
@xj

.j D 1; : : : ; n/ generate u.n/

u.n/ + xi
@

@xj
: (11.2)

Introducing the double index notation of the previous chapters

Xik D xi
@

@xk
.i; k D 1; : : : ; n/; (11.3)

one obtains the commutation relations

ŒXik; Xmn� D ıkmXin � ıinXmk: (11.4)

For su.n/, one subtracts
P

j Xjj from the diagonal elements
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X 0
ii D Xii � 1

n

X

j

Xjj: (11.5)

and deletes X 0
nn. (The n elements X 0

ii are not linear independent since
P

i X
0
ii D 0.)

The n2 � 1 elements Xik.i ¤ k D 1; : : : ; n/ and X 0
ii.i D 1; : : : ; n � 1/ generate

su.n/.

Example 1. Differential realization of u.2/

Introduce two coordinates x; y. The differential realization is

X11 D x
@

@x
;X12 D x

@

@y
;X21 D y

@

@x
;X22 D y

@

@y
: (11.6)

Example 2. Differential realization of su.2/

From the preceding example, one obtains

X 0
11 D 1

2

�
x
@

@x
� y @

@y

�
; X12 D x

@

@y
;X21 D y

@

@x
: (11.7)

11.3 Orthogonal Algebras so.n/

Differential realization are often used to construct orthogonal Lie algebras. Intro-
duce n real coordinates, x1; x2; ::; xn . A construction of the Lie algebra so.n/ is

so.n/ + xi
@

@xj
� xj

@

@xi
: (11.8)

Introducing the notation

Lij D xi
@

@xj
� xj

@

@xi
; i < j D 1; : : : ; n: (11.9)

one obtains the commutation relations

�
Lij; Lkl

� D ıjkLil C ıilLjk � ıjlLik � ıikLjl: (11.10)

The n.n�1/
2

elements Lij are called angular momentum operators.

Example 3. The Lie algebra so(2)

We introduce here two coordinates, x; y, as in part (a) of Fig. 11.1. The single
element of so.2/ is
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x

y

z
P

θ

x

y

P

a b

Fig. 11.1 Coordinates for differential realizations of (a) so.2/ and (b) so.3/

X1 D y
@

@x
� x @

@y
: (11.11)

This element acts on functions f .x; y/.

Example 4. The Lie algebra so(3)

We introduce here three coordinates, x; y; z, as in part (b) of Fig. 11.1. The three
elements of so.3/ are, in a single index notation,

X1 D z
@

@y
� y

@

@z

X2 D x
@

@z
� z

@

@x

X3 D y
@

@x
� x @

@y
(11.12)

acting of f .x; y; z/. The elements satisfy the commutation relations

ŒX1;X2� D X3 I ŒX2;X3� D X1 I ŒX3;X1� D X2: (11.13)

Example 5. The Lie algebra so(4)

We introduce here four coordinates, x; y; z; t . The six elements of so.4/ are

A1 D z
@

@y
� y

@

@z
; A2 D x

@

@z
� z

@

@x
;A3 D y

@

@x
� x

@

@y
;

B1 D x
@

@t
� t

@

@z
; B2 D y

@

@t
� t

@

@y
;B3 D z

@

@t
� t

@

@z
: (11.14)

acting on f .x; y; z; t/:
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The realization (11.8) is in n variables x1; x2; : : : ; xn. Another realization is in
terms of n�1 angle variables '1; '2; : : : ; 'n�1. This realization is obtained by intro-
ducing hyperspherical coordinates, .x1; x2; : : : ; xn/ ! .r; 'n�1; 'n�2; 'n�3; : : : ; '1/

x1 D r sin 'n�1 sin'n�2 : : : sin '2 sin '1

x2 D r sin 'n�1 sin'n�2 : : : sin '2 cos'1

: : :

xn�1 D r sin 'n�1 cos'n�2
xn D r cos'n�1 (11.15)

and setting r D 1 (realization on the unit n dimensional sphere.)

Example 6. so(2) in polar coordinates

Introducing

x D r cos'
y D r sin '

(11.16)

one has

X1 D @

@'
: (11.17)

Example 7. so(3) in spherical coordinates

Introducing

x D r sin# cos'
y D r sin# sin '
z D r cos#

; (11.18)

one has

X1 D cos' @
@#

C sin ' ctg# @
@'

X2 D � sin' @
@#

� cos' ctg# @
@'

X3 D @
@'

: (11.19)

Example 8. so(4) in hyperspherical coordinates

One needs here three angles, #; ';  . The corresponding form of the Lie algebra is
called Pauli form.
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11.3.1 Casimir Operators: Laplace-Beltrami Form

All operators are constructed in terms of differential operators. The differential form
of the Casimir operators is often referred to as Laplace-Beltrami form.

Example 9. The Laplace-Beltrami form of so(2)

We have here trivially

C1.so.2// D @

@'
; C2.so.2// D @2

@'2
: (11.20)

Example 10. The Laplace-Beltrami form of so(3)

We have here

C2.so.3// D 1

sin2 #

@2

@'2
C 1

sin#

@

@#
.sin#

@

@#
/: (11.21)

11.3.2 Basis for the Representations

One also needs to construct the basis for the representations. In the realization in
terms of angles, the basis is constructed using the canonical chain

so.n/ � so.n � 1/ � : : : � so.2/: (11.22)

Example 11. Basis for so(3)

In this case one seeks simultaneous eigenfunctions of C2.so.3// and C2.so.2//

C2.so.2// ˚.'/ D �m2 ˚.'/

C2.so.3// �.#/ D �l.l C 1/ �.#/: (11.23)

The eigenfunctions are the spherical harmonics

Y ml .#; '/ D
s
2l C 1

4�

.l �m/Š

.l Cm/Š
.�1/m eim'Pm

l .cos#/: (11.24)

It has become customary in physical applications to introduce the elements
Lx;Ly;Lz obtained from those previously given by multiplication with .1=i/
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8
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
:̂

Lx D 1
i

�
cos' @

@#
� sin 'ctg# @

@'

�

Ly D 1
i
.� sin' @

@#
� cos' ctg# @

@'
/

Lz D 1
i
@
@'

. (11.25)

From these one can also construct the elements in Cartan-Weyl form, Lz; L˙ D
Lx ˙ iLy . The action of those elements on the basis is

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

Lz Y
m
l .#; '/ D mYml .#; '/

LC Y ml .#; '/ D p
.l �m/.l CmC 1/ Y mC1

l .#; '/

L� Y ml .#; '/ D p
.l Cm/.l �mC 1/ Y m�1

l .#; '/

. (11.26)

The abstract notation is

ˇ
ˇ̌
ˇ
ˇ
ˇ

so.3/ � so.2/
# #
l m

+

� Y ml .#; '/: (11.27)

Note that with differential realizations it is possible to construct only tensor rep-
resentations of the orthogonal algebras. The construction of spinor representations
requires the introduction of another mathematical framework, either that of spinors
(Cartan 1966) or that of Grassmann variables (Berezin 1987).

11.4 Orthogonal Algebras so.n; m/

Although the discussion in the preceding chapters has been devoted to compact Lie
algebras, it is of interest to consider here non-compact Lie algebras, so.n;m/. A
construction of the Lie algebra so.n;m/ is

so.n;m/ + ıixi
@

@xj
� ıj xj

@

@xi
; (11.28)

where

ıi D
�
1 i D 1; : : : ; n

�1 i D nC 1; : : : ; nCm
(11.29)
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Example 12. The Lorentz algebra so.3; 1/

Introducing coordinates x; y; z; t , the elements are

A1 D x
@

@y
� y @

@x
;A2 D y

@

@z
� z

@

@y
;A3 D z

@

@x
� x @

@z
;

B1 D x
@

@t
C t

@

@x
; B2 D y

@

@t
C t

@

@y
;B3 D z

@

@t
C t

@

@z
: (11.30)

11.5 Symplectic Algebras sp.2n/

A differential realization of sp.2n/ is obtained by introducing 2n coordinates
divided into x1; : : : ; xnI x0

1; : : : ; x
0
n. A construction of sp.2n/ is

xi
@
@x0

i
i D 1; : : : ; n n

x0
i
@
@xi

i D 1; : : : ; n n

xi
@
@xj

� x0
j
@
@x0

i
i; j D 1; : : : ; n n2

xi
@
@x0

j
C xj

@
@x0

i
i < j D 1; : : : ; n

n.n�1/
2

x0
i
@
@xj

C x0
j
@
@xi

i < j D 1; : : : ; n
n.n�1/
2

: (11.31)

The number of elements is written to their right. There are in total n.2n C 1/

elements.

Example 13. The Lie algebra sp.2/

Introducing coordinates x1; x0
1 one has

X1 D x1
@

@x0
1

; X2 D x0
1

@

@x1
;X3 D x1

@

@x1
� x0

1

@

@x0
1

: (11.32)

All the differential realizations discussed above are real forms (Chen 1989).
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Matrix Realizations

12.1 Matrices

Lie algebras can be constructed with n � n square matrices

A D
0

@
	 	 	
	 	 	
	 	 	

1

A (12.1)

acting on the right on column vectors with n rows

� D
0

@
	
	
	

1

A ; (12.2)

and on the left on row vectors with n columns

Q� D � 	 	 	 � : (12.3)

Properties of matrices have been given in Chap. 3.
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12.2 Unitary Algebras u.n/

The matrices

Ekm D

0

B
B
BB
B
B
B
@

0

0

0 0 0 1 0 0

0

0

0

1

C
C
CC
C
C
C
A

(12.4)

with 1 in the k-th row andm-th column and zero otherwise, satisfy the commutation
relations of u.n/ [and gl.n/]

ŒEkm; Est� D ısmEkt � ıktEsm: (12.5)

For su.n/, one subtracts the unit matrix, I , divided by n,

I D

0

B
B
B
BB
@

1 0

1

	 	 	
1

0 1

1

C
C
C
CC
A

(12.6)

from Ekk

E 0
kk D Ekk � 1

n
I (12.7)

and deletes E 0
nn. The remaining n2 � 1 matrices are the elements of su.n/. This

procedure provides real forms of u.n/ and su.n/.

Example 1. Matrix realization of u.2/

A real matrix realization of u.2/ is

E11 D
�
1 0

0 0

�
; E12 D

�
0 1

0 0

�
;

E21 D
�
0 0

1 0

�
; E22 D

�
0 0

0 1

�
: (12.8)
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Example 2. Matrix realization of su.2/

A real matrix realization of su.2/ is

E 0
11 D 1

2

�
1 0

0 �1
�
; E12 D

�
0 1

0 0

�
;

E21 D
�
0 0

1 0

�
: (12.9)

It is of interest in physics to introduce also complex forms of the algebras u.n/ and
su.n/: A common construction is: (i) Retain Ekk for u.n/ and E 0

kk for su.n/ for the
elements with k D m. (ii) Take the combinations .Ekm C Emk/ ; �i .Ekm � Emk/

for the elements with k ¤ m. This gives the complex form of u.n/

Ekk k D 1; : : : ; n n

EC;km D Ekm C Emk k < m D 1; : : : ; n
n.n�1/
2

E�;km D �i .Ekm � Emk/ k < m D 1; : : : ; n
n.n�1/
2

: (12.10)

The number of elements of each type is written to the far right.

Example 3. Complex form of u.2/

The complex form of u.2/ is

E11 D
�
1 0

0 0

�
; E22 D

�
0 0

0 1

�
;

EC;12 D
�
0 1

1 0

�
; E�;12 D

�
0 �i
i 0

�
: (12.11)

Example 4. Complex form of su.2/

This algebra is composed of three elements

EC;12 D E12 C E21

E�;12 D �i .E12 �E21/

E 0
11 D E11 � 1

2
I: (12.12)

The corresponding matrices, denoted by �x; �y; �z, are

�x D
�
0 1

1 0

�
; �y D

�
0 �i
i 0

�
; �z D

�
1 0

0 �1
�
: (12.13)
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The last matrix,E 0
11, has been multiplied by 2 to conform with the usual normaliza-

tion of �z. They are called Pauli matrices and are widely used in quantum mechanics.
The Pauli matrices, together with the unit matrix, I ,

I D
�
1 0

0 1

�
; (12.14)

that is the matrices of u.2/, form also another algebra, not discussed here, called a
Clifford algebra.

Example 5. Complex form of u.3/

The complex form of u.3/ is

EC;12 D
0

@
0 1 0

1 0 0

0 0 0

1

A ; E�;12 D
0

@
0 �i 0
i 0 0

0 0 0

1

A ; EC;13 D
0

@
0 0 1

0 0 0

1 0 0

1

A ;

E�;13 D
0

@
0 0 �i
0 0 0

i 0 0

1

A ; EC;23 D
0

@
0 0 0

0 0 1

0 1 0

1

A ; E�;13 D
0

@
0 0 0

0 0 �i
0 i 0

1

A ;

E11 D
0

@
1 0 0

0 0 0

0 0 0

1

A ; E22 D
0

@
0 0 0

0 1 0

0 0 0

1

A ; E33 D
0

@
0 0 0

0 0 0

0 0 1

1

A : (12.15)

Example 6. Complex form of su.3/

In the complex form of su.3/ the first six matrices remain the same

X1 D
0

@
0 1 0

1 0 0

0 0 0

1

A ; X2 D
0

@
0 �i 0
i 0 0

0 0 0

1

A ; X3 D
0

@
0 0 1

0 0 0

1 0 0

1

A ;

X4 D
0

@
0 0 �i
0 0 0

i 0 0

1

A ; X5 D
0

@
0 0 0

0 0 1

0 1 0

1

A ; X6 D
0

@
0 0 0

0 0 �i
0 i 0

1

A : (12.16)

The last three matrices are replaced by the two matrices

X7 D 1

3

0

@
2 0 0

0 �1 0

0 0 �1

1

A ; X8 D 1

3

0

@
�1 0 0

0 2 0

0 0 �1

1

A : (12.17)
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Note that the choice of the traceless matrices is not unique. In applications, often
different choices are made. A commonly used choice is

X7 D
0

@
1 0 0

0 �1 0
0 0 0

1

A ; X8 D
r
1

3

0

@
1 0 0

0 1 0

0 0 �2

1

A : (12.18)

The corresponding matrices are called Gell-Mann matrices.

12.3 Orthogonal Algebras so.n/

A real matrix realization of the algebras so.n/ with square n � n matrices is

Lkm D Ekm � Emk k < m; (12.19)

where the matrices Ekm are given above.

Example 7. Matrix realization of so.2/

A real matrix realization of so.2/ is

L12 D E12 � E21 D
�
0 1

�1 0
�
: (12.20)

This algebra is Abelian, and can be written in many ways.

Example 8. Matrix realization of so.3/

A real matrix realization of so.3/ is

L12 D
0

@
0 1 0

�1 0 0
0 0 0

1

A ; L13 D
0

@
0 0 1

0 0 0

�1 0 0

1

A ; L23 D
0

@
0 0 0

0 0 1

0 �1 0

1

A : (12.21)

In applications in quantum mechanics, the complex form iLkm is used. However,
matrix realizations of so.n/ are rarely used.

12.4 Symplectic Algebras sp.2n/

The construction of symplectic algebras is more involved. It is necessary here to
introduce 2n � 2n matrices
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Ek;m D

0

B
BB
B
B
B
BB
B
@

0

0

0 0 	 	 	 0 1 0 0

0

	 	 	
0

0

1

C
CC
C
C
C
CC
C
A

: (12.22)

The rows and columns are labelled by the indices k;m D 1; : : : ; nIn C 1; : : : ; 2n.
A real matrix realization of sp.2n/ is

Ek;nCk k D 1; ::; n n

EnCk;k k D 1; : : : ; n n

Ek;m �EnCm;nCk k;m D 1; : : : ; n n2

Ek;nCm C Em;nCk k < m D 1; : : : ; n
n.n�1/
2

EnCk;m C EnCm;k k < m D 1; : : : ; n
n.n�1/
2

: (12.23)

The number of elements of each type is shown to the right.

Example 9. The algebra sp.2/

In this case n D 1. The construction gives

E12 D
�
0 1

0 0

�
IE21 D

�
0 0

1 0

�
IE11 � E22 D

�
1 0

0 �1
�
: (12.24)

Note that sp.2/ � su.2/. The matrix realization of sp.2/ is identical to that of su.2/
given in (12.9), apart from a normalization of the elementE 0

11 D 1
2
.E11 � E22/.

Example 10. The algebra sp.4/

In this case n D 2. The construction gives the ten elements

E13IE24IE31IE42 4

.E11 � E33/ I .E12 � E43/ I .E21 � E34/ I .E22 � E44/ 4

.E14 C E23/ I .E32 C E41/ 2

: (12.25)

where

E13 D

0

BB
@

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1

CC
A ; etc: (12.26)

This provides a real form of sp.2n/.
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12.5 Basis for the Representation

A basis for the fundamental n dimensional representation of u.n/ and su.n/ is
provided by n-columns vectors

B W

0

B
B
BB
B
@

1

0

	 	 	
0

0

1

C
C
CC
C
A
;

0

B
B
BB
B
@

0

1

	 	 	
0

0

1

C
C
CC
C
A
; : : : ;

0

B
B
BB
B
@

0

0

	 	 	
0

1

1

C
C
CC
C
A
: (12.27)

Example 11. The basis for su.2/

The basis for the two-dimensional representation of su.2/ is formed by two columns
vectors, often denoted by ˛; ˇ

˛ D
�
1

0

�
; ˇ D

�
0

1

�
: (12.28)

The matrix realization of the algebra can be re-written in Cartan-Weyl form,
introducing the matrices �˙ D 1

2
.�x ˙ i�y/,

�C D
�
0 1

0 0

�
; �� D

�
0 0

1 0

�
; �z D

�
1 0

0 �1
�
: (12.29)

The action of the elements on the basis is

�C˛ D 0 ��˛ D ˇ �z˛ D ˛

�Cˇ D ˛ ��ˇ D 0 �zˇ D �ˇ : (12.30)

One of the most important applications of su.2/ in physics is in the description of
particles with spin S D 1

2
. The three spin operators; Sx; Sy; Sz can be simply be

written as Sk D 1
2
�k . The “spin” basis was discussed in Chap. 10 where it was

denoted by

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

su.2/ � spin.2/
# #

S D 1
2

MS D ˙ 1
2

+

: (12.31)

The relation between the basis here and that discussed in Chap. 10 is

˛ �
ˇ
ˇ
ˇ
ˇ
1

2
;C1

2


; ˇ �

ˇ
ˇ
ˇ
ˇ
1

2
;�1
2


: (12.32)
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Example 12. The basis for su(3)

The basis for the fundamental representation of su.3/ is formed by three column
vectors

˛1 D
0

@
1

0

0

1

A ; ˛2 D
0

@
0

1

0

1

A ; ˛3 D
0

@
0

0

1

1

A : (12.33)

The matrix realization of su.3/ was given in Example 6. In applications to particle
physics, the Gell-Mann matrices were used. This basis was discussed in Chap. 10,
where it was denoted by

ˇ
ˇ̌
ˇ
ˇ
ˇ

su.3/ � su.2/ � spin.2/
# # #

Œ�1; �2� � Œ1� T D 0; 1
2

MT D 0;˙ 1
2

+

: (12.34)

The relation between the basis (12.33) and that discussed in Chap. 10 is

˛1 D
ˇ̌
ˇ
ˇŒ1� ;

1

2
;C1

2


� u; ˛2 D

ˇ̌
ˇ
ˇŒ1�;

1

2
;�1
2


� d; ˛3 D jŒ1� ; 0; 0i � s; (12.35)

where the notation u; d; s used in particle physics has also been included.
For representations of u.n/ and su.n/ other than the fundamental representation,

matrix realizations are seldom used.

12.6 Casimir Operators

The Casimir operators can be constructed from matrices. For the algebras u.n/ and
su.n/, the unit matrix I commutes with all elements and thus is a Casimir operator.

Example 13. The Casimir operator of su.2/

For applications to physics it is of particular interest to construct the Casimir
operator of su.2/. This algebra has only one invariant, C2.su.2//. It can be easily
shown that the invariant is

C2.su.2// D �2x C �2y C �2z D 3I: (12.36)

(The condition �2i D I is one of the axioms defining a Clifford algebra.) The
eigenvalues of the Casimir operator in the basis are

h˛j
X

k

�2k j˛i D 3; hˇj
X

k

�2k jˇi D 3: (12.37)
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In application in physics, the algebra su.2/ often describes spin 1
2

particles. The
eigenvalues of the Casimir invariant in the two-dimensional representation of
su.2/ is

hC2.su.2//i D 3

4
: (12.38)

This value agrees with the eigenvalues of the Casimir operator in the generic
representation jJ;M i of su.2/ given in Chap. 10,

hC2.su.2//i D J.J C 1/; (12.39)

since here J D S D 1
2
.



Chapter 13
Coset Spaces

Coset spaces introduced in Chap. 5 are used in many applications in physics. Among
other things, they provide a “geometry” to the algebraic models discussed in Chap. 9
by associating geometric variables to the coset decomposition (5.1) of the algebra
g into h ˚ p. Denoting by j�i the irreducible representations of g, one chooses
among them a state, called the extremal state j�exti, such that it is annihilated by
the largest number of vectors in the algebra. The “geometric’ coset variables �i are
defined by

j�i i D exp

"
X

i

�ipi

#

j�exti ; pi 2 p. (13.1)

In the following sections, an explicit construction of the coset spaces
U.n/=U.n� 1/˝U.1/, SO.n/=SO.n� 1/ and SO.nC 2/=SO.n/˝ SO.2/ is given.
These spaces are denoted either by the groupsG=G0 ˝G00 or by the corresponding
algebras g=g0 ˚ g00.

13.1 Coset Spaces U.n/=U.n � 1/ ˝ U.1/

The simplest way to construct these spaces is within a bosonic realization. Let g be
u.n/ and consider the realization

g D u.n/I g + G˛ˇ D b�˛bˇI ˛; ˇ D 1; : : : ; n: (13.2)

Let the stability algebra h be

h D u.n � 1/˚ u.1/: (13.3)

© Springer-Verlag Berlin Heidelberg 2015
F. Iachello, Lie Algebras and Applications, Lecture Notes in Physics 891,
DOI 10.1007/978-3-662-44494-8__13

211



212 13 Coset Spaces

This stability algebra, called the maximal stability algebra, can be simply con-
structed by selecting one of the bosons, say 1, and writing

h + b
�
1b1; b

�
˛bˇ; ˛; ˇ D 2; : : : ; n: (13.4)

The remainder p in the Cartan decomposition g D h˚ p is then

p + b
�
1b˛; b

�
˛b1; ˛ D 2; : : : ; n: (13.5)

The properties of h and p are

Œh; h� � h; Œh; p� � p; Œp; p� � h. (13.6)

The irreducible representations of u.n/ that can be constructed with boson operators
are the totally symmetric representations

jN i �
ˇ
ˇ
ˇ
ˇ
ˇ

N; 0; 0; : : : ; 0„ ƒ‚ …
n

+

: (13.7)

The extremal state is

j�exti D 1p
NŠ

�
b
�
1

�N j0i : (13.8)

13.2 Coherent (or Intrinsic) States

Coset spaces can be constructed by introducing the states (13.1), called coherent or
intrinsic states. Several types of coherent states have been used in applications.

13.2.1 ‘Algebraic’ Coherent States

We introduce n � 1 complex variables, �˛; ˛ D 2; ::; n: Algebraic coherent states
are defined as

jN I �˛i D
h
exp

�
�˛b

�
˛b1 � ��̨b�1b˛

�i 1p
NŠ

�
b
�
1

�N j0i : (13.9)

All states of the irrep ŒN � can be generated in this way. They are called ‘algebraic’
because the variables �˛ parametrize the elements pi of the algebra.
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13.2.2 ‘Group’ Coherent States

We introduce n � 1 complex variables �˛; ˛ D 2; : : : ; n. Group coherent states are
defined as

jN I �˛i D 1p
NŠ

h�
1 � ��̨�˛

�1=2
b
�
1 C �˛b

�
˛

iN j0i : (13.10)

These states are called ‘group’ coherent states because �˛ is the matrix element of
the group element that transforms b�1 j0i into b�˛ j0i :

Introducing the redundant variable �1, one has

j�1j2 C j�2j2 C : : :C j�nj2 D 1: (13.11)

The space � is therefore compact

j�j2 D ��̨�˛ � 1; ˛ D 2; : : : ; n: (13.12)

A relation between the group and the algebraic variables can be found by expanding
the exponential in (13.9) and noting that the extremal state (13.8) is annihilated by
all boson operators b˛; ˛ D 2; : : : ; n;

b˛ j�exti D 0; ˛ D 2; ::; n: (13.13)

The state (13.9) can then be rewritten as

jN I �˛i D 1p
NŠ

	
.cos j�j/ b�1 C sin j�j

j�j �˛b
�
˛


N
j0i ; j�j D �

��̨�˛
�1=2

;

(13.14)

yielding

�˛ D �˛
sin j�j

j�j : (13.15)

The group coherent states have the interesting property that the resolution of the
identity can be written as

1 D D.N/
.n � 1/Š
.2�i/n�1

Z
dn�1�dn�1�� jN I �i hN I �j ; (13.16)

where D.N/ is the dimension of the representation ŒN � discussed in Chap. 6.
The resolution of the identity for the ‘algebraic’ and ’projective’ states is similar
to (13.16) but with a different integration measure.
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13.2.3 ‘Projective’ Coherent States

We introduce here n � 1 complex variables #˛; ˛ D 2; : : : ; n: The projective
coherent states are

jN I#˛i D exp
�
#˛b

�
˛b1
� 1p

NŠ

�
b
�
1

�N j0i

D 1p
NŠ

h
b
�
1 C #˛b

�
˛

iN j0i : (13.17)

The relation between projective variables #˛ and group variables �˛ is

#˛ D �˛
�
1 � ��̨�˛

��1=2
: (13.18)

The states are called ‘projective’ because of the projective transformation

j#˛j2 D j�˛j2
1� j�˛j2

: (13.19)

Projective coherent states are often used in applications. Normalized projective
coherent states, also called intrinsic states, are defined as

jN I#˛i D 1p
NŠ

2

6
4

1
�
1C j#j2

�1=2

�
b
�
1 C #˛b

�
˛

�
3

7
5

N

j0i : (13.20)

The states (13.20) are also called ‘condensate’ coherent states since they are
obtained by applying to the vacuum j0i the ’condensate’ creation operator

b�c D 1
�
1C j#j2

�1=2

�
b
�
1 C #˛b

�
˛

�
(13.21)

N times,

jN I#˛i D 1p
NŠ

�
b�c
�N j0i : (13.22)
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13.2.4 Coset Spaces

The coherent states of the previous subsection provide parametrizations of the coset
spacesU.n/=U.n�1/˝U.1/ in terms of the n�1 complex variables �˛ (algebraic),
�˛ (group),#˛ (projective). The dimension of these spaces is 2.n�1/ as in Table 5.1,

dimŒU.n/=U.n� 1/˝ U.1/� D 2 .n � 1/ : (13.23)

Particularly important for applications are: (i) the complex projective spaces PCn�1
with n � 1 complex variables #˛ and (ii) the group spaces, �˛. Introducing the
redundant variable �1 as in (13.11), one can convert these spaces into the complex
spaces Cn with constraint

�1�
�
1 C : : :C �n�

�
n D 1: (13.24)

In some applications, it is also of interest to construct the coset spaces
U.n� 1; 1/=U.n� 1/˝ U.1/. These have the same dimension as (13.23)

dim ŒU.n � 1; 1/=U.n� 1/˝ U.1/� D 2 .n � 1/ (13.25)

and can be converted into complex spaces Cn as before, but with the constraint

�1�
�
1 � �2�

�
2 � : : : � �n�

�
n D 1: (13.26)

13.3 Coherent States of u.n/; n D Even

In many applications it is of interest to construct coherent states for rotationally
invariant problems. In these cases, it is convenient to introduce the Racah form of
the Lie algebra, discussed in Chap. 9. The algebra u.n/; n Deven, can be constructed
in Racah form by introducing a scalar boson operator, s, and a boson operator, bl ,
that transforms as the representation jli of so.3/. Coherent states can be simply
constructed in this case by selecting the s boson as generating u.1/ and writing

h D u.2l C 1/˚ u.1/: (13.27)

The u.1/ algebra in (13.27) is simply composed of s�s, while u.2lC 1/ is the boson
realization b�l;mbl;m0 of Chap. 9. Particularly interesting cases for applications are
those with l D 0 .u.2//, l D 1 .u.4//, and l D 2 .u.6//.
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13.3.1 Coherent States of u.2/

We introduce a boson realization of u.2/ in terms of two (scalar) bosons �; � . This
realization is the same as in (9.18), except for renaming b1 ! �; b2 ! � . The
stability algebra and the remainder are simply constructed

g D u.2/ + ���; ���; ���; ���

h D u.1/˚ u.1/ + ���; ���

p + ���; ���: (13.28)

In this case we have one complex variable � and the group states are

jN I �i D 1p
NŠ

h�
1 � ���

�1=2
�� C ���

iN j0i : (13.29)

The complex variable � can be split into a coordinate q and a momentum p

� D 1p
2
.q C ip/ ; �� D 1p

2
.q � ip/ ; (13.30)

describing motion in one dimension.
The normalized ‘projective’ state, also called intrinsic state, is written as

jN I ri D 1p
NŠ

	
1p
1C r2

�
�� C r��

�
N j0i ; (13.31)

where the variable r � # is called the intrinsic variable.

13.3.2 Coherent States of u.4/

We construct the algebra of u.4/ in Racah form by introducing a scalar boson, � ,
and a vector boson, �	;	 D 0;˙1, that transforms as the representation l D 1

of so.3/. The vector boson is denoted here by �	 instead of p	 of (9.112), not to
confuse it with the momentum. The elements of the Lie algebra g � u.4/ can be
split into a stability algebra h D u.3/˚ u.1/ and a remainder p as
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�
�� � Q��.0/

0

o
u.1/

�
�� � Q��.0/

0

�
�� � Q��.1/




�
�� � Q��.2/




9
>>>>>=

>>>>>;

u.3/

9
>>>>>>>>>>>=

>>>>>>>>>>>;

h

�
�� � Q��.1/




�
�� � Q��.1/




9
>=

>;
p: (13.32)

The phase convention in (13.32) is Q�	 D .�/	 ��	; Q� D � . Also, instead of the
operators in (13.32), one can use as a remainder p,

�
�� � Q� C �� � Q��

i
�
�� � Q� � �� � Q�� : (13.33)

There are in this case 3 complex variables �	; 	 D 0;˙1. The group states are

ˇ
ˇN I �	

˛ D 1p
NŠ

	�
1 � j�j2

�1=2
�� C �

� 	 ���

N

j0i ; (13.34)

where the dot denotes scalar products with respect to so.3/

A.k/ 	 B.k/ D
X

	

.�/	 A.k/	 B.k/�	: (13.35)

The complex variables �	 can be rewritten in terms of coordinates and momenta in
a three-dimensional space as

�	 D 1p
2

�
q	 C ip	

�
; (13.36)

with phases such that

��
	 D 1p

2

�
q�
	 � ip�

	

�
; q�

	 D .�/	 q�	; p�
	 D .�/	 p�	: (13.37)
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The normalized coherent state is

ˇ
ˇN I#	

˛ D 1p
NŠ

2

6
4

1
�
1C j#j2

�1=2

�
�� C #	�

�
	

�
3

7
5

N

j0i : (13.38)

Instead of using the three variables #	; 	 D 0;˙1, one can use the two angles .�; �/
defining the orientation of the vector # , and an intrinsic variable r . The intrinsic
state can then be written in the form

jN I ri D 1p
NŠ

	
1p
1C r2

�
�� C r�

�
0

�
N
j0i ; (13.39)

containing only the intrinsic variable r .

13.3.3 Coherent States of u.6/

We construct the algebra u.6/ in Racah form by introducing a scalar boson, s, and
a quadrupole boson d	; 	 D 0;˙1;˙2, that transforms as l D 2 of so.3/. The
elements of the Lie algebra g � u.6/ can be split into a stability algebra h and a
remainder p as

�
s� � Qs�.0/

0

o
u.1/

�
d� � Qd

�.0/

0

�
d� � Qd

�.1/




�
d� � Qd

�2/




�
d� � Qd

�.3/




�
d� � Qd

�.4/




9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

u.5/

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

h

�
d� � Qs�.2/




�
s� � Qd

�.2/




9
>>=

>>;
p; (13.40)
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with the phase convention Qd	 D .�/	d�	, Qs D s. Also here, instead of the
remainder in (13.40), one can use

�
d� � Qs C s� � Qd

�.2/




i
�
d� � Qs � s� � Qd

�.2/



: (13.41)

The group coherent states are written in terms of 5 complex variables �	; 	 D
0;˙1;˙2 as

ˇ
ˇN I �	

˛ D 1p
NŠ

	�
1� j�j2

�1=2
s� C �

� 	 d��

N

j0i : (13.42)

Introducing coordinates and momenta

�	 D 1p
2

�
q	 C ip	

�

��
	 D 1p

2

�
q	 � ip	

�
; (13.43)

one can study motion in a five-dimensional space.
The normalized intrinsic state is

ˇ
ˇN I#	

˛ D 1p
NŠ

2

6
4

1
�
1C j#j2

�1=2

�
s� C #	d

�
	

�
3

7
5

N

j0i : (13.44)

Instead of using the five variables #	; 	 D 0;˙1;˙2, one can use the three Euler
angles .�1; �2; �3/ defining the orientation of the quadrupole tensor # in space, and
two intrinsic variables, ˇ and � , called Bohr variables. The intrinsic state can then
be written in the form

jN Iˇ; �i D 1p
NŠ

"
1

p
1C ˇ2

	
s� C ˇ

�
cos �d�0 C 1p

2
sin �.d�C2 C d

�
�2
�
#N

� j0i ; (13.45)

containing only the intrinsic variables ˇ and � . Details of the definition of intrinsic
Bohr variables are given in Iachello and Arima (1987).
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13.4 Coherent States of u.n/; n D Odd

Coherent states of u.n/; n D odd, can be constructed in a similar fashion as those of
n D even, except that now one divides the boson operators into a scalar boson s and
boson operators bl with an even number of components. These boson operators
are no longer tensors under so.3/, but rather tensors under the algebra of two-
dimensional rotations, so.2/, and are called cylindrical or circular bosons. Important
cases are l D 1, doublet boson with components 	 D ˙1 under so.2/, and l D 2,
quadruplet boson with components 	 D ˙2;˙1 under so.2/, by means of which
one can construct bosonic coherent states of u.3/ and u.5/.

13.4.1 Coherent States of u.3/

We introduce here a singlet boson operator � and a doublet �x; �y . The doublet can
be rewritten as in (9.100). The cylindrical boson operators

�
�

˙ D � 1p
2

�
��x ˙ i��y

�
; (13.46)

transform as the representations	 D ˙1 of so.2/. The algebra u.3/ and its maximal
stability algebra u.2/˚ u.1/ are, in the notation of Sect. 9.5.6,

g + Ons; On; Ol ; OQC; OQ�; ODC; OD�; ORC; OR�

h + OnsI On; Ol ; OQC; OQ�
p + ODC; OD�; ORC; OR�: (13.47)

Introducing the two-dimensional complex variable �	; 	 D ˙1, one can write the
group states as

ˇ
ˇN I �	

˛ D 1p
NŠ

	�
1 � j�j2

�1=2
�� C �

� 	 ���

N

j0i ; (13.48)

where the dot represents two-dimensional scalar product, A 	 B D AxBx CAyBy .
The intrinsic state has also in this case the structure of (13.20) with #	; 	 D ˙1.

However, when going to intrinsic coordinates, it is convenient to use cylindrical
coordinates, x D r cos �; y D r sin � , and define the frame in such a way that
� D 0. The intrinsic state is then

jN I ri D 1p
NŠ

	
1p
1C r2

�
�� C r��x

�

N

j0i : (13.49)
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13.5 Generalized Coherent States

The coherent states described in the previous sections represent only a portion of all
coherent states. In physical applications, they describe the ground state of a bosonic
system. Coherent states describing multiply excited states of bosonic systems have
been constructed. A discussion of the generalized coherent states of u.3/ constructed
with a scalar boson, � , and a doublet boson, �˙, is given in Caprio (2005). A general
theory of coherent states is given in Perelomov (1986). A review is given in Zhang
et al. (1990).

13.6 The Geometry of Algebraic Models

The coherent states introduced in the previous sections form a basis for the study
of the geometry of algebraic models discussed in Chap. 9. In these models, the
Hamiltonian and other operators are expanded into elements Xi of a Lie algebra g,
Xi 2 g, usually taken as u.n/,

H D E0 C
X

i

"iXi C
X

ij

vijXiXj C : : :

T D T0 C
X

i

tiXi C : : : : (13.50)

The coherent states for these models are the coset states u.n/=u.n�1/˚u.1/. They
have n � 1 complex variables � � .�1; �2; : : : ; �n�1/. The expectation value of the
Hamiltonian and other operators in the coherent state is called the ’classical’ limit
of the algebraic Hamiltonian

Hcl
�
�; ��� D hŒN �I � jH j ŒN �I �i

hŒN �I �jŒN �I �i : (13.51)

By introducing coordinates and momenta, as in (13.30), � D 1p
2
.q C ip/, one

can construct a Hamiltonian system with H a function of p and q, H.p; q/. This
Hamiltonian is not in the canonical Schrödinger form

H.p; q/ D p2

2m
C V.q/; (13.52)

with separation into a kinetic term, independent of q, and a potential term,
independent of p. Nonetheless, it is of great interest in applications, especially in
the study of phase transitions in algebraic models. A review of these applications is
given in Cejnar and Iachello (2007).
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13.7 Coset Spaces SO.n C m/=SO.n/ ˝ SO.m/

These coset spaces are particularly important in the description of space coordinates
in Rn and also for the construction of real projective spaces, PRn. The dimension
of the real coset SO.nCm/=SO.n/˝ SO.m/ is

dim ŒSO.nCm/=SO.n/˝ SO.m/� D 1

2
.nCm/ .nCm� 1/

�1
2
n .n � 1/� 1

2
m .m � 1/ D nm: (13.53)

The spaces SO.n C 1/=SO.n/ have dimension n and are used in the description of
problems with rotational invariance both in classical and quantum mechanics.

13.7.1 The Coset Space SO.3/=SO.2/: The Sphere S 2

We consider here the coset space SO.3/=SO.2/ with dimension 2. This space can
also be mapped onto the coset space U.2/=U.1/ ˝ U.1/ and SU.2/=U.1/. The
elements of the Lie algebra so.3/ can be written as in (2.10). The stability algebra in
the decomposition g D h˚p is formed by the single element Jz and the remainder
p is JC; J�,

g D so.3/ + JC; J�; Jz

h D so.2/ + Jz

p + JC; J� (13.54)

We denote the representations of so.3/ by jj i with components jj;mi. We take as
extremal state

j�exti � jj;�j i : (13.55)

The coherent states of so.3/=so.2/ � u.2/=u.1/˚u.1/� su.2/=u.1/ can be written
in various ways. The ‘algebraic’ coherent states of u.2/=u.1/˚ u.1/ can be written
as in (13.9) in terms of the complex variable �

jj I �; ��i D exp
�
�JC � ��J�

� jj;�j i : (13.56)

By introducing the real variables �; � through

� D e�i� �
2

, �� D ei�
�

2
, (13.57)
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they can be rewritten as

jj I �; �i D exp

	
e�i� �

2
JC � ei� �

2
J�



jj;�j i : (13.58)

These states, called Bloch states, are used in quantum mechanics. Their overlap is

˝
j I � 0; �0jj I �; �˛ D

	
cos

� 0

2
cos

�

2
C e�i .���0/ sin

� 0

2
sin

�

2


2j
: (13.59)

Instead of the Cartan form of the algebra JC; J�; Jz, one can use the Cartesian form
Jx; Jy; Jz with J˙ D Jx ˙ iJy . The algebraic coherent states can then be written as

jj I �; ��i D exp
��
� � ���Jx C i

�
�C ��� Jy

� jj;�j i : (13.60)

By introducing the real and complex part of �, � D ˛ C iˇ; �� D ˛ � iˇ, one can
rewrite (13.60) as

jj Iˇ1; ˇ2i D exp Œˇ1X1 C ˇ2X2� jj;�j i ; (13.61)

where X1 D iJx; X2 D iJy are elements of the real Lie algebra so.3/, (1.9), and
ˇ1 D 2iˇ; ˇ2 D 2i˛. We see here explicitly how all the states of the representation
jj i can be generated starting from the extremal state jj;�j i, Fig. 13.1.

mj

J+
–2

–1

0

+1

+2j=2

Extremal
state

Fig. 13.1 States of the representation j D 2 generated by the action of the remainder p on the
extremal state j2;�2i
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Parametrizations of the Coset Space SO.3/=SO.2/

The ‘algebraic’ parametrization of the coset space SO.3/=SO.2/ is in terms of two
parameters, ˇ1; ˇ2. This space is just R2.

The ‘group’ parametrization of the coset space SO.3/=SO.2/ can be obtained
from ˇ1; ˇ2 with the change of variables

xi D ˇi
sin
�P

i 0 ˇ
2
i 0

�1=2

�P
i 0 ˇ

2
i 0

�1=2 ; i; i 0 D 1; 2: (13.62)

Introducing the redundant variable x3

x3 D ˙
q
1 � x21 � x22; (13.63)

one has

x21 C x22 C x23 D 1: (13.64)

This space is thus the two-sphere embedded in R3, S2 � R3. Points on the unit
sphere can be parametrized by two angles �; � through

x1 D sin � cos� , x2 D sin � sin � , x3 D cos �: (13.65)

The ‘projective’ parametrization is obtained by the change of variables

zi D xiq
1 �P

i 0 x
2
i 0

; i; i 0 D 1; 2: (13.66)

The corresponding space is called the real projective space, PR2. The situation is
summarized in Fig. 13.2.

13.7.2 The Coset Space SO.4/=SO.3/

We consider here a realization of g D so.4/ as in (1.29). The algebra g can be split
into h˚ p as

g D so.4/ + DC;D�;Dz I LC; L�; Lz

h D so.3/ + LC; L�; Lz

p + DC;D�;Dz; (13.67)

with ŒL;L� � L; ŒD;L� � D; ŒD;D� � L. The representations of so.4/ are
labelled as in (6.59)
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x3

x1

x2

x3=1

f

f( , )on sphere surface

(x1,x2)
Coset representative

(
x1

x3
,
x2

x3
) In projective plane

q

q

Fig. 13.2 Group variables x1; x2; x3 with x21 C x22 C x23 D 1 or .�; �/ for the sphere S2 
 R3,
and projective variables x1

x3
; x2
x3

for PR2

ˇ
ˇ
ˇ
ˇ̌
ˇ

so.4/ � so.3/ � so.2/
# # #

.!1; !2/ L ML

+

: (13.68)

We consider the symmetric representation .!; 0/ with branchingL D 0; 1; ::; ! and
�L � ML � CL and take as extremal state L D 0; ML D 0. The algebraic
coherent states for the representation .!; 0/ are

j.!; 0/ I �C; ��; �zi � j.!; 0/ I �i
D exp Œ�CDC C ��D� C �zDz� j.!; 0/ I 0; 0i
D exp Œ� 	 D� j.!; 0/ I 0; 0i : (13.69)

All states can be obtained from (13.69) as shown schematically in Fig. 13.3.

Parametrizations of the Coset Space SO.4/=SO.3/

The algebraic parametrization of the coset space SO.4/=SO.3/ is in terms of three
real variables ˇ1; ˇ2; ˇ3. This space is just R3.

The group parametrization is in terms of variables

xi D ˇi
sin
�P

i 0 ˇ
2
i 0

�1=2

�P
i 0 ˇ

2
i 0

�1=2 ; i; i 0 D 1; 2; 3: (13.70)
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ML

L

0

D+

+1 +2

D–

–1–2

Extremal
state

Dz

Fig. 13.3 The states of the representation .2; 0/ of so.4/ obtained from the extremal state L D 0;

ML D 0

Adding a redundant variable x4 D ˙
q
1 � x21 � x22 � x23 , we see that

the group space is the three-sphere, S3 � R4. One can also use three
angles �; �;  , called Pauli angles, to parametrize this space with states
j.!; 0/ I �; �;  i.

The projective parametrization is in terms of the projective variables

zi D xiq
1 �P

i 0 x
2
i 0

; i; i 0 D 1; 2; 3: (13.71)

This space is the projective real space PR3.

13.7.3 The Coset Spaces SO.n C 2/=SO.n/ ˝ SO.2/

The coset spaces SO.n C 1/=SO.n/ of the preceding Sect. 13.7.2 are those most
used in quantum mechanics and are simply constructed in terms of n real variables.
As an example of more elaborate coset spaces, we consider here the spaces SO.nC
2/=SO.n/˝ SO.2/ with 2n real variables. In particular, we explicitly construct the
space SO.4/=SO.2/˝ SO.2/.
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ML

L

0

D+

+1 +2

D–

–1–2

L+ L–

Extremal
state

Fig. 13.4 The states of the representation .2; 0/ obtained from the extremal state L D 0;ML D 0

by acting with the remainder p of (13.72)

The Coset Space SO.4/=SO.2/ ˝ SO.2/

The algebra so.4/ composed of D˙;Dz; L˙; Lz of the previous subsection is
decomposed here into g D h˚ p, with h D so.2/˚ so.2/, as

g D so.4/ + DC;D�;Dz I LC; L�; Lz

h D so.2/˚ so.2/ + Dz I Lz

p + DC;D� I LC; L� (13.72)

The algebraic coherent states are

ˇ
ˇ.!; 0/ I �C; ��; �0C; �0�

˛ D exp
�
�CDC C ��D� C �0CLC C �0�L�

�

� j.!; 0/ ; 0; 0i ; (13.73)

where �C; ��; �0C; �0� are real variables. All states of the representation .!; 0/ can
be obtained from (13.73), as shown schematically in Fig. 13.4.

Several parametrizations are again possible for the space SO.4/=SO.2/˝ SO.2/.
The algebraic parametrization is in terms of 4 real parameters ˇ1; ˇ2; ˛1; ˛2
appearing in the coherent state

j.!; 0/ Iˇ1; ˇ2; ˛1; ˛2i D exp Œˇ1X1 C ˇ2X2 C ˛1Y1 C ˛2Y2�

� j.!; 0/ I 0; 0i ; (13.74)
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where X1;X2; Y1; Y2 are the real form of p. Instead of the four variables
ˇ1; ˇ2; ˛1; ˛2, we can use the ‘group’ variables x1; x2; y1; y2, conveniently arranged
in a 2 � 2 matrix

X D
�
x1 y1
x2 y2

�
: (13.75)

Introducing redundant variables such that

�
x3 y3
x4 y4

�
D
	�
1 0

0 1

�
�
�

x21 C x22 x1y1 C x2y2
x1y1 C x2y2 y21 C y22

�
1=2
� Y; (13.76)

we can construct projective variables by

Z D X

Y
D
�

z12 z21
z12 z22

�
: (13.77)

The Generic Coset SO.n C 2/=SO.n/ ˝ SO.2/

A construction of the generic coset spaces SO.n C 2/=SO.n/ ˝ SO.2/ can be
done by generalizing the results of the previous subsection. The ‘group’ variables
x1x2; : : : ; xnIy1; y2; : : : ; yn can be arranged into a n � 2 matrix

0

BB
@

x1 y1
x2 y2

: : : : : :

xn yn

1

CC
A : (13.78)

The projective variables z1i ; z
2
i , i D 1; 2; ::; n, can be obtained from (13.78) by first

introducing the n � 2 matrix

Y D
	
I �

�
x 	 x x 	 y
x 	 y x 	 y

�
1=2
; (13.79)

and then taking Z D XY �1 to produce the n � 2 matrix

0

B
B
@

z11 z21
z12 z22
: : : : : :

z1n z2n

1

C
C
A : (13.80)
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13.8 Coset Spaces SO.n; m/=SO.n/ ˝ SO.m/

These coset spaces can be treated in the same way as the spaces SO.nCm/=SO.n/˝
SO.m/. Particularly important in applications are the cosets SO.n; 1/=SO.n/ which
appear in relativistic quantum mechanics and relativistic quantum field theories.

13.8.1 The Coset Space SO.2 ; 1/=SO.2/: The Hyperboloid H 2

We consider here the coset space SO.2; 1/=SO.2/ with dimension 2. This space can
also be mapped onto the coset spaces U.1; 1/=U.1/˝ U.1/ and SU.1; 1/=U.1/.

The algebra so.2; 1/ is the complex extension of so.3/, as given in (1.18), and
composed of Y1 D �iX1; Y2 D �iX2; Y3 D X3. The decomposition g D h˚ p is

g D so.2; 1/ + Y1; Y2; Y3

h D so.2/ + Y3

p + Y2; Y3 D �iX1;�iX2: (13.81)

Parametrizations of the Coset Space SO.2 ; 1/=SO.2/

The ‘algebraic’ parametrization of the coset space SO.2; 1/=SO.2/ is in terms of
two parameters ˇ1; ˇ2. The ‘group’ parametrization can be obtained from ˇ1; ˇ2
with the change of variables

xi D ˇi
sinh

�P
i 0 ˇ

2
i 0

�1=2

�P
i 0 ˇ

2
i 0

�1=2 ; i; i 0 D 1; 2: (13.82)

Introducing the redundant variable x3

x3 D ˙
q
1C x21 C x22 ; (13.83)

one has

x23 � x21 � x22 D 1: (13.84)

This space is the two-hyperboloid embedded in R3, H2 � R3, shown in Fig. 13.5.
Points on the hyperboloid can be parametrized by two angles �; � through

x1 D sinh � cos� , x2 D sinh � sin � , x3 D cosh � . (13.85)
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x3
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x2

x3=1

x3=0

on hyperboloid
surface

(x1,x2)
Coset representative

(
x1

x3
,
x2

x3
) In projective plane

H2 R3

f( , )q

Fig. 13.5 Group variables x1; x2; x3 with x23�x21�x22 D 1 or .�; �/ for the hyperboloidH2 
 R3,
and projective variables x1

x3
; x2
x3

The projective parametrization is obtained by the change of variables

zi D xiq
1CP

i 0 x
2
i 0

; i; i 0 D 1; 2: (13.86)

13.8.2 The Coset Space SO.3; 1/=SO.3/

The Lorentz algebra so.3; 1/ is the complex extension of so.4/, as given in (1.33).
The decomposition g D h˚ p is

g D so.3; 1/ + Y1; Y2; Y3IL1;L2; L3
h D so.3/ + L1;L2; L3

p + Y1; Y2; Y3 D �iD1;�iD2;�iD3: (13.87)

Parametrizations of the Coset Space SO.3; 1/=SO.3/

The ‘algebraic’ parametrization of this space is in terms of three variables ˇ1; ˇ2; ˇ3.
The group parametrization is in terms of variables
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xi D ˇi
sinh

�P
i 0 ˇ

2
i 0

�1=2

�P
i 0 ˇ

2
i 0

�1=2 ; i; i 0 D 1; 2; 3: (13.88)

Adding a redundant variable x4 D ˙
q
1C x21 C x22 C x23 , we see that the group

space is the three-hyperboloid, H3 � R4. This space can also be parametrized
in terms of three angles �; �;  . The projective parametrization is in terms of the
variables

zi D xiq
1CP

i 0 x
2
i 0

; i; i 0 D 1; 2; 3: (13.89)

13.9 Action of the Coset P D G=H

In some applications, it is of interest to consider the action of the coset P D G=H .
The coset P is

P D expp: (13.90)

In the following subsections, the explicit form of the coset representative of P is
given for some cases of practical interest. By applying the coset P to a point in the
coset space, � , we can reach other points, � 0, in this space. The set of all points that
can be reached by applying P is called the orbit of the point � under G=H .

13.9.1 Cosets SO.n C 1/=SO.n/

For these cosets, the algebraic parametrization is in terms of variables ˇi ; i D
1; : : : ; n, in Rn. The coset can be written as

exp

0

B
B
@

ˇ1

0 : : :

ˇn

�ˇ1 : : : �ˇn 0

1

C
C
A D exp

 
0 B

�Bt 0

!

: (13.91)

By expanding the exponential, one can rewrite (13.91) in terms of .nC 1/�.nC 1/

matrices
0

@
cos

p
BBt B sin

p
BBtp

BBt

�Bt sin
p

BtBp
BtB

cos
p

BtB

1

A : (13.92)
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Introducing the group variables xi , i D 1; : : : ; n, one can rewrite the matrix (13.92)
as

 �
In � XXt

�1=2
X

�Xt ŒIn � XtX�1=2

!

; (13.93)

with

xi D bi
sin
�Pn

i 0D1 ˇ2i 0
�

�Pn
i 0D1 ˇ2i 0

� ; (13.94)

or, introducing a redundant variable xnC1 D ˙
q
1 �P

i x
2
i , such that

x21 C x22 C : : :C x2n C x2nC1 D 1; (13.95)

as

0

BB
@

: : : x1

: : : : : :

: : : xn

�x1 : : : �xn xnC1

1

CC
A : (13.96)

The coset space is here Sn � RnC1.

Example 1. The coset SO.3/=SO.2/

In this case the coset representative is

exp

0

@
0 0 ˇ1
0 0 ˇ2

�ˇ1 �ˇ2 0

1

A D
0

@
: : x1
: : x2

�x1 �x2 x3

1

A (13.97)

and the coset space is the sphere S2 � R3. By acting with P D G=H on the
coordinates of the north pole .0; 0; 1/ we can map it into the entire sphere

0

@
: : x1

: : x2

�x1 �x2 x3

1

A

0

@
0

0

1

1

A D
0

@
x1
x2

x3

1

A : (13.98)

Therefore, the sphere S2 is called the orbit of the north pole under
SO.3/=SO.2/, Fig. 13.6.
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x3

x2

x1

North pole (0,0,1)

G/H
Point on sphere surface

Fig. 13.6 The sphere S2 as the orbit of the north pole .0; 0; 1/ under SO.3/=SO.2/

13.9.2 Cosets SO.n; 1/=SO.n/

For these cosets, one can repeat the treatment of the previous subsections with
appropriate change of signs and replacement of trigonometric functions with
hyperbolic functions. The cosets can be written as

exp

 
0 B

Bt 0

!

: (13.99)

By expanding the exponential, one obtains

0

@
cosh

p
BBt B sinh

p
BBtp

BBt

Bt sinh
p

BtBp
BtB

cosh
p

BtB

1

A : (13.100)

Introducing the variables xi , i D 1; : : : ; n, and the redundant variable xnC1 D
˙
q
1CP

i x
2
i , such that

� x21 � : : : � x2n�1 � x2n C x2nC1 D 1; (13.101)

one can rewrite the coset as
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0

B
B
@

: : : x1
: : : : : :

: : : xn

x1 : : : xn xnC1

1

C
C
A : (13.102)

The coset space is here Hn � RnC1.

Example 2. The coset SO.2; 1/=SO.2/

In this case the coset representative is

exp

0

@
0 0 ˇ1
0 0 ˇ2

ˇ1 ˇ2 0

1

A D
0

@
: : x1

x2

x1 x2 x3

1

A : (13.103)

This space is H2 � R3.
Additional properties of the coset spaces, such as geodesics, distance, metric and

volume of cosets are discussed in Gilmore (1974).



Chapter 14
Spectrum Generating Algebras and Dynamic
Symmetries

14.1 Spectrum Generating Algebras

One of the most important applications of Lie algebras has been to the study of
physical systems for which the Hamiltonian H and other operators of physical
interest T can be written in terms of elements G˛ of a Lie algebra g,

H D f .G˛/ G˛ 2 g (14.1)

and

T D t.G˛/ G˛ 2 g: (14.2)

The Lie algebra g is then called the Spectrum Generating Algebra (SGA) of the
problem. The functionals f and t are usually polynomials in the elements G˛ ,
although cases have been studied in which 1=H rather than H is a polynomial in
the elements of the algebra (the so-called Coulomb problem discussed in Chap. 15).
It turns out that most many-body problems, that is Hamiltonian problems for many
interacting particles, can be cast in the form of a polynomial expansion in G˛ . The
method is thus particularly important for this case. It is convenient to use the double
index notation,G˛ˇ , of Chaps. 9 and 10. The expansion can then be written as

H D E0 C
X

˛ˇ

"˛ˇG˛ˇ C 1

2

X

˛ˇ�ı

u˛ˇ�ıG˛ˇG�ı C : : : : (14.3)

The term linear in the elements is called one-body term, the term quadratic in the
elements is called two-body term, etc.. Most theories stop the expansion at two-body
terms, although in some cases three- and higher-body terms have been considered.

© Springer-Verlag Berlin Heidelberg 2015
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The term E0 is an overall constant, which sets the zero of the energy, and the
coefficients "˛ˇ; u˛ˇ�ı; : : : depend on the physical system under consideration.

14.2 Dynamic Symmetries

A particularly interesting situation occurs when the HamiltonianH does not contain
all elements of g, but only those combinations which form the Casimir operators of
a chain of algebras originating from g � g0 � g00 � : : :

H D f .Ci /: (14.4)

For these situations, called dynamic symmetries (DS), the eigenvalue problem for
H can be solved in explicit analytic form, since the Casimir operators are diagonal
in the basis provided by g � g0 � g00 � : : :. The energy eigenvalues are given by
a formula called energy formula in terms of the quantum numbers that characterize
the representations of g � g0 � : : :, while the matrix elements of the transition
operators T are given in terms of isoscalar factor of the chain g � g0 � g00 � : : :.
When the HamiltonianH is linear in the Casimir operators

H D E0 C ˛C.g/C ˛0C.g0/C ˛00C.g00/C : : : (14.5)

the energy formula is simply

E D hH i D E0 C ˛ hC.g/i C ˛0 ˝C.g0/
˛C ˛00 ˝C.g00/

˛C : : : ; (14.6)

where hi denotes expectation value in the appropriate representation. Several
examples will be discussed in the following sections. In these examples, taken
from the fields of molecular physics, nuclear physics and hadronic physics, the
HamiltonianH is at most quadratic in the elements of the algebra g, and hence the
Hamiltonian with dynamic symmetry contains at most Casimir operators of order 2.
Systems for which the Hamiltonian has a dynamic symmetry are also called exactly
solvable problems. Dynamic symmetries were introduced in Barut and Böhm (1965)
and Dothan et al. (1965) and subsequently exploited in nuclear physics (Iachello
1979, p. 420) and other areas.

14.3 Bosonic Systems

Consider a system composed of N bosons b˛.˛ D 1; 2; : : : ; n/. The (number
conserving) Hamiltonian operator for this system can be written as
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H D E0 C
X

˛ˇ

Q"˛ˇb�˛bˇ C 1

2

X

˛ˇ�ı

u˛ˇ�ıb
�
˛b

�

ˇb�bı C : : : . (14.7)

After rearrangement of some of the boson operators, this Hamiltonian can be written
as above with G˛ˇ D b

�
˛bˇ and

"˛ˇ D Q"˛ˇ � 1

2

X

�

u˛��ˇ: (14.8)

The bilinear products b�˛bˇ are the elements of the Lie algebra u.n/. Hence u.n/ is
the spectrum generating algebra of this problem. The transition operators

T D
X

˛ˇ

t˛ˇb
�
˛bˇ C : : : (14.9)

can also be written in terms of the elements of the Lie algebra u.n/. A physical
system is characterized by a set of parameters Q"˛ˇ; u˛ˇ�ı and t˛ˇ . The methods of
the previous chapters can then be used to solve the eigenvalue problem for H , that
is to find the energy spectrum of the system under consideration, and to calculate
matrix elements of operators.

Dynamic symmetries of this system can be studied by breaking u.n/ in all
possible ways. Often additional conditions are imposed on the breaking of the
algebra g into its subalgebras g0. In most applications, the system under study
is rotationally invariant. Hence the algebra so.3/ must be included in the chain
g � g0 � g00 � : : :. The breakings of u.n/ into its subalgebras containing
so.3/ were enumerated in Chap. 9. Knowing these breakings one can construct the
corresponding dynamic symmetries. Two examples of boson dynamic symmetries
will be given here.

14.3.1 Dynamic Symmetries of u.4/

Consider the algebra g � u.4/ discussed in Chap. 9. This algebra has two
subalgebra chains containing so.3/

u.3/ � so.3/ � so.2/ .I /

u.4/
�
Ÿ

so.4/ � so.3/ � so.2/ .II/

(14.10)

and correspondingly two possible dynamic symmetries.
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Dynamic symmetry I
The Hamiltonian in this case can be written as

H.I/ D E0 C "C1.u.3//C ˛C2.u.3//C ˇC2.so.3//: (14.11)

The Casimir operator of so.2/ could be added to this Hamiltonian. However, this
corresponds physically to placing the system in an external field that splits the
degeneracy of the angular momentum. In the absence of external fields, the Casimir
operator of so.2/ can be deleted. Also the invariant operators of u.4/ could be
included in the overall constant E0,

E0 D E00 C E01C1.u.4//C E02C2.u.4//: (14.12)

In the representation ŒN � of u.4/ appropriate to bosons,

E0 D E00 CE01N C E02N.N C 3/ (14.13)

is a constant for all states in the basis.
The eigenvalues of H.I/ in the basis j N; np;L;MLi can simply be found from

the eigenvalues of the Casimir operators given in Chap. 7,

E.I/.N; np; L;ML/ D E0 C "np C ˛np.np C 2/C ˇL.LC 1/: (14.14)

Usually, a hierarchy of couplings occurs, in such a way that successive splittings are
smaller and smaller, j"j � j˛j � jˇj. It is customary to show the spectrum in an
energy level diagram. The energy level diagram of the dynamic symmetry I of u.4/,
with " > 0, is shown in the top part of Fig. 14.1.

This is the spectrum of a truncated three dimensional anharmonic oscillator.
When ˛ D ˇ D 0, the spectrum is called harmonic. The spectrum is truncated,
since according to the branching rules of Chap. 9, np � N .

Dynamic symmetry II
The Hamiltonian for this case is

H.II/ D E0 C AC2.so.4//C BC2.so.3//; (14.15)

where again the Casimir operator of so.2/ has been deleted. The eigenvalues of
H.II/ in the basis jN;!;L;MLi are

E.II/.N; !;L;ML/ D E0 C A!.! C 2/C BL.LC 1/: (14.16)

Usually jAj � jBj. The energy level diagram of this dynamic symmetry, when
A < 0, is shown in the bottom portion of Fig. 14.1. It represents the spectrum
of the truncated three dimensional rotovibrator. In the figure, the usual vibrational
quantum number is also shown. A three-dimensional rotovibrator is an object, such
as a diatomic molecule, which can vibrate and rotate around an axis perpendicular to
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a

b

Fig. 14.1 The energy level diagram of the dynamic symmetries of u.4/: a u.4/ 	 u.3/ 	 so.3/ 	
so.2/; b u.4/ 	 so.4/ 	 so.3/ 	 so.2/. The representation Œ4� is shown

to
R

to
R Vib

Vib

Fig. 14.2 A diatomic molecule is shown as an example of a truncated three-dimensional rotovi-
brator

the line joining the two atoms, as shown in Fig. 14.2. This spectrum is characterized
by a set of states belonging to the same representation of so.4/, called a rotational
band. Different representations of so.4/ correspond to different vibrational excita-
tions. The spectrum is truncated since, according to the branching rules of Chap. 9,
! � N .

The two dynamic symmetries represent special situations. In general, the
HamiltonianH will contain Casimir operators of both chains

H D E0 C "C1.u.3//C ˛C2.u.3//C AC2.so.4//C BC2.so.3//: (14.17)
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The eigenvalues must be obtained numerically. For this most general case, Lie
algebraic methods provide a basis upon which the numerical diagonalization is
done. In the case of u.4/, there are two such bases, corresponding to the two dynamic
symmetries (I) and (II).

Models based on the algebra of u.4/ and its dynamic symmetries have found
many applications in molecular physics (Iachello and Levine 1995).

14.3.2 Dynamic Symmetries of u.6/

For g � u.6/, the subalgebra chains containing so.3/ are

u.5/ � so.5/ � so.3/ � so.2/ .I /

�
u.6/ � su.3/ � so.3/ � so.2/ .II/

Ÿ
so.6/ � so.5/ � so.3/ � so.2/ .III/

(14.18)

and correspondingly there are three possible dynamic symmetries.
Dynamic symmetry I
The Hamiltonian is

H.I/ D E0 C "C1.u.5//C ˛C2.u.5//C ˇC2.so.5//C �C2.so.3//; (14.19)

where again the Casimir operator of so.2/ has been omitted. The eigenvalues in the
basis jN; nd ; v; n�;L;MLi are

E.I/.N; nd ; v; n�;L;ML/ D E0 C "nd C ˛nd .nd C 4/

Cˇv.v C 3/C �L.LC 1/: (14.20)

Usually j"j � j˛j � jˇj � j� j. The energy level diagram, when " > 0, is shown
in Fig. 14.3 (top panel). It represents the spectrum of the truncated five-dimensional
anharmonic oscillator. If ˛ D ˇ D � D 0, the spectrum is called harmonic.

Dynamic symmetry II
The Hamiltonian is

H.II/ D E0 C 
C2.su.3//C 
0C2.so.3//: (14.21)

Its eigenvalues in the basis jN;�;	;K;L;MLi are

E.II/.N; �; 	;K;L;ML/ D E0 C 
.�2 C 	2 C �	C 3�C 3	/C 
0L.LC 1/:

(14.22)
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a

b

c

Fig. 14.3 The energy level diagram of the dynamic symmetries of u.6/: a u.6/ 	 u.5/ 	 so.5/ 	
so.3/ 	 so.2/; b u.6/ 	 su.3/ 	 so.3/ 	 so.2/; c u.6/ 	 so.6/ 	 so.5/ 	 so.3/ 	 so.2/. The
representation Œ3� is shown

Usually j
j � j
0j. The corresponding energy level diagram, when 
 < 0, is shown
in Fig. 14.3 (middle panel). This is the spectrum of the truncated five-dimensional
rotovibrator. A five-dimensional rotovibrator is an object, such as an atomic nucleus
deformed in the shape of a quadrupole, which can vibrate and rotate around an axis
perpendicular to the symmetry axis of the quadrupole, as shown in Fig. 14.4.

Each representation .�; 	/ represents a rotational band. Different representations
.�; 	/ label vibrational excitations.

Dynamic symmetry III
The Hamiltonian is

H.III/ D E0 C AC2.so.6//C BC2.so.5//C CC2.so.3//: (14.23)
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Vib
Vib

Rot

Rot

Fig. 14.4 A nucleus deformed in the shape of an ellipsoid is shown as an example of a truncated
five-dimensional rotovibrator

Its eigenvalues in the basis jN; �; �; ��;L;MLi are

E.III/.N; �; �; ��;L;ML/ D E0CA�.�C4/CB�.�C3/CCL.LC1/: (14.24)

Usually jAj � jBj � jC j. The energy level diagram when A < 0 is shown in
Fig. 14.3 (bottom panel). It is called the five dimensional ��unstable rotovibrator.

The three dynamic symmetries represent special situations. In general, the
Hamiltonian contains Casimir operators of all three chains

H D E0 C "C1.u.5//C ˛C2.u.5//C ˇC2.so.5//C �C2.so.3//

C
C2.su.3//C AC2.so.6// (14.25)

and must be diagonalized numerically. Models based on the algebra u.6/ and its
dynamic symmetries have had many applications in nuclear physics (Iachello and
Arima 1987).

14.4 Fermionic Systems

Spectrum generating algebras and dynamic symmetries can also be used for
fermions. Consider a system composed of NF fermions ai .i D 1; 2; ::; n/. The
number conserving Hamiltonian operator for this system can be written as

H D E0 C
X

ii0

Q�ii0a
�
i ai 0 C 1

2

X

ii0kk0

vii0kk0a
�
i a
�

i 0akak0 C : : : . (14.26)

After rearrangement of some of the fermion operators, the Hamiltonian can be
rewritten as
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H D E0 C
X

ii0

�ii0Gii0 C 1

2

X

iki 0k0

vii0kk0GikGi 0k0 C : : : . (14.27)

The elements Gii0 span the Lie algebra u.n/. Hence u.n/ is the spectrum generating
algebra of this problem. All operators can be expanded into elements of this algebra.
The transition operators

T D
X

ii0

tii0a
�
i ai 0 C : : : (14.28)

are written as

T D
X

ii0

tii0Gii0 C : : : . (14.29)

A physical system is characterized by a set of parameters �ii0 ; vii0kk0 and tii0 . One can
use the methods of the previous chapters to solve the eigenvalue problem forH and
to calculate the matrix elements of operators.

Dynamic symmetries of these systems can be studied by breaking u.n/ in all
possible ways. There are two types of problems, the atomic and nuclear many body
problem in which the Hamiltonian is rotationally invariant and thus so.3/ must be
included in the chain g � g0 � g0 � : : :, and other problems in which one treats
internal degrees of freedom and thus rotationally invariance need not to be imposed.
The former problem is identically to that discussed in Sect. 14.3. In the following
subsections two examples will be given of the latter problem.

14.4.1 Dynamic Symmetry of u.4/

The Wigner algebra u.4/ of Sect. 10.6.1 is described by the chain

u.4/ � su.4/ � suT .2/˚ suS.2/ � spinT .2/˚ spinS .2/. (14.30)

The basis states can be denoted by j.P; P 0; P 00/IT; S IMT ;MSi. The Hamiltonian
with dynamic symmetry is

H D E0CaC2.su.4//CbC2.suT .2//CcC2.suS.2//CdC1.spinT .2//: (14.31)

In this Hamiltonian, the Casimir operator of spinS .2/ is not included, unless the
system is placed in an external field that splits the suS.2/ degeneracy, but the Casimir
operator of spinT .2/ is included. This group acts on an abstract isotopic spin space.
In this space, there are interactions (for example the electromagnetic interaction)
that split the suT .2/ degeneracy. The eigenvalues of the Hamiltonian are

E.P;P 0; P 00IT; S IMT ;MS/ D E0 C a.P 2 C 4P C P 02 C P 002/
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CbT.T C 1/C cS.S C 1/C dMT : (14.32)

A simple case is when b D c D d D 0 (Franzini and Radicati 1963).

14.4.2 Dynamic Symmetry of u.6/

The Gürsey-Radicati u.6/ of Sect. 10.6.2 is described by the chain

u.6/ � su.6/ � suF .3/˚ suS.2/ � suT .2/˚ uY .1/˚ suS.2/

� spinT .2/˚ uY .1/˚ spinS .2/. (14.33)

The basis states are denoted by
ˇ
ˇdimŒ��Idim S dimŒ	1; 	2�IT; Y; S IMT ;MS

˛
. For

applications to elementary particle physics, the mass squared operator M2 rather
than the Hamiltonian H is expanded into the elements of a Lie algebra. The mass
squared operator, M2, with dynamic symmetry is written in terms of Casimir
invariants as

M2 D M2
0 C aC2.suF .3//C a0C1.uY .1//C bC2.suT .2//C b0.C1.uY .1///2

CcC2.suS .2//C dC1.spinT .2//C d 0 .C1.spinT .2//
2 ; (14.34)

with eigenvalues

M2.Œ��; Œ	1; 	2�IT; Y; S IMT ;MS/ D M2
0 C a hC2.suF .3//i C a0Y C bT.T C 1/

Cb0Y 2 C cS.S C 1/C dMT C d 0M2
T .

(14.35)

In the expansion (14.34), terms containing the Casimir operators of spinS .2/ have
been omitted, since the inclusion of these terms will amount to placing the system
in an external field. Also, the invariant operators of u.6/ could be included in the
overall constantM2

0 ,

M2
0 D M2

00 CM01C1.u.6//CM02C2.u.6//: (14.36)

In the representation Œ�� of u.6/, the expectation value of M2
0 is

M2
0 D M2

00 CM01 hC1.u.6//i CM02 hC2.u.6//i ; (14.37)

which is an overall constant. Furthermore, the terms containing the Casimir oper-
ators of spinT .2/ describe electromagnetic splittings between states with different
values of MT . It turns out that these splittings are small, and therefore the terms
d; d 0 can be omitted. Also, a dynamical input suggests that b0 D � 1

4
b, thus yielding
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Fig. 14.5 Mesons and baryons in the quark model

M2 .Œ�� ; Œ	1; 	2� IT; Y; S IMT ;MS/ D M2
0 C a hC2.suF .3//i C a0Y

Cb
	
T .T C 1/� 1

4
Y 2



C cS.S C 1/.

(14.38)

This formula, called a mass formula, gives the masses of all states (particles)
belonging to a given representation Œ�� of su.6/. It has been used in this form,
M2, or in its linear form, M , to describe the masses of particles composed of
u; d; s quarks in the quark model. In this model, denoting by q a quark and by Nq
an antiquark, particles called mesons are bound states of a quark an antiquark, q Nq,
while particles called baryons are bound states of there quarks, q3, as schematically
shown in Fig. 14.5.

Since quarks are assigned to the representation Œ1; 0; 0; 0; 0� of su.6/, with
dimension 6, Table 10.6, and antiquarks to the representation Œ1; 1; 1; 1; 1�, with
dimension N6, the meson states belong to the representations

Œ1; 0; 0; 0; 0�˝ Œ1; 1; 1; 1; 1� D Œ2; 1; 1; 1; 1�˚ Œ0� ;

6˝ N6 D 35˚ 1: (14.39)

Similarly, baryons belong to the representations

Œ1; 0; 0; 0; 0�˝ Œ1; 0; 0; 0; 0�˝ Œ1; 0; 0; 0; 0� D Œ3; 0; 0; 0; 0�˚ Œ2; 1; 0; 0; 0�

˚ Œ2; 1; 0; 0; 0�˚ Œ1; 1; 1; 0; 0; 0�

6˝ 6˝ 6 D 56˚ 70˚ 70˚ 20. (14.40)

The mass level diagram for the representation Œ3� of baryons is shown in Fig. 14.6,
where it is divided into the two representations 28 and 410 of suS .2/ ˚ suF .3/
(Gürsey and Radicati 1964).
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a

b

Fig. 14.6 The mass level diagram of the representation Œ3� of u.6/ with dimension 56: a Baryon
octet, 28; b baryon decuplet 410. States are labeled by quantum numbers and by names of particles
to which they correspond

The suF .3/ flavor part of this formula, in its linear form

M D M0 C a0Y C b

	
T .T C 1/� 1

4
Y 2


; (14.41)

called the Gell-Mann and Okubo mass formula, was the first explicit example
of dynamic symmetry in physics (Gell-Mann 1962; Okubo 1962). Further details
on applications of group theoretcial methods in particle physics can be found in
(Georgi, 1962) and (Lipkin, 1966).



Chapter 15
Degeneracy Algebras and Dynamical Algebras

15.1 Degeneracy Algebras

Another important application of algebraic methods in physics is to the study of
exactly solvable problems in quantum mechanics. Consider quantum mechanics in
� dimensions described by the Hamiltonian

H D � „2
2m

r2 C V.r/ (15.1)

where r 2 is the Laplace operator and r � .x1; x2; : : : ; x�/ denotes a vector
in � dimensions with components x1; x2; : : : ; x� . (In this chapter, � denotes the
dimension of the space and n the so-called principal quantum number.) This
Hamiltonian is obtained from the classical Hamiltonian

H D p2

2m
C V.r/ (15.2)

by the usual quantization procedure p ! „
i
r . If the Hamiltonian (15.1) can be

written in terms of the Casimir operator C of an algebra g,

H D f .C / (15.3)

the eigenvalue problem forH can be solved in explicit analytic form,

E D hf .C /i : (15.4)

This situation is a dynamic symmetry, Chap. 14, Sect. 14.2, except that only the
Casimir operator of g and not those of the subalgebra chain g � g0 � g00 �
: : : appears in (15.3). The representations Œ�� of g still label the eigenstates of the
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Hamiltonian and the symbol hi denotes expectation value in the representation Œ��.
If dimŒ�� ¤ 1, more than one state has energy E . The state is said to be degenerate
and the algebra g is called the degeneracy algebra, gc , of the problem.

15.2 Degeneracy Algebras in � � 2 Dimensions

A particularly interesting class of problems is that of quantum mechanics in � � 2

dimensions with rotationally invariant potentials, V D V.r/. Here

r D .x21 C x22 C : : :C x2�/
1=2: (15.5)

This problem admits two and only two exactly solvable cases, the isotropic harmonic
oscillator with V.r/ D 1

2
kr2, and the Coulomb (or Kepler) problem with V.r/ D k

r
.

15.2.1 The Isotropic Harmonic Oscillator

The Hamiltonian operator, in units where „ D m D 1 and k D 1, is

H D 1

2
.p2 C r2/ D 1

2
.�r2 C r2/: (15.6)

Introducing the bosonic realization of Chap. 9 written in differential form and
generalizing the results of Example 3 one can write the linear Casimir operator
of u.�/ as

C1.u.�// D 1

2

�X

jD1

�
xj � @

@xj

��
xj C @

@xj

�
: (15.7)

The basic commutation relations
	
xi ;

@

@xj



D �ıij (15.8)

give

H D C1.u.�//C �

2
: (15.9)

The degeneracy algebra of the �-dimensional harmonic oscillator is thus u.�/.
Jauch and Hill (1940) States are characterized by the totally symmetric irreducible
representations Œn; 0; : : : ; 0� � Œn� of u.�/, with eigenvalues
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E.n/ D nC �

2
n D 0; 1; : : : ;1: (15.10)

Although harmonic oscillator problems are best attacked by bosonic realizations of
Lie algebras, it is still of interest to consider differential realizations in terms of

coordinates r � .x1; x2; : : : ; x�/ and momenta p D 1
i
r � 1

i

�
@
@x1
; @
@x2
; : : : ; @

@x�

�
.

Example 1. Isotropic harmonic oscillator in three dimensions

As discussed in Chap. 9, this problem is best solved in spherical coordinates r; #; '.
The Hamiltonian (15.2) is

H D p2

2
C r2

2
; (15.11)

where r and p are here three-dimensional vectors. The nine operators

H D 1

2

�
r2 C p2

�

L D �ip2Œr � p�.1/

Q D Œr � r C p � p�.2/ ; (15.12)

where L and Q are the angular momentum vector and quadrupole (rank-2) tensor
in three dimensions, satisfy commutation relations isomorphic to those of u.3/.
(The notation used here is that of De Shalit and Talmi (1963), where r and p are
rank-1 tensors, and the superscript denotes tensor couplings. The operator Q has an
additional factor, often

p
8, in other definitions.) The algebra u.3/ has three invariant

Casimir operators, C1; C2 and C3. The Hamiltonian H of (15.11) can be rewritten
as

H D C1.u.3//C 3

2
: (15.13)

(Note thatH commutes with the eight elements of the algebra su.3/, L and Q.) The
eigenstates are labelled by the irreducible representations Œn; 0; 0� � Œn� of u.3/. A
complete labelling is jn; l;mi with

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.3/ � so.3/ � so.2/
# # #
n l m

+

: (15.14)

The branching of the representations Œn� of u.3/ into representations of so.3/ �
so.2/ has been discussed in Chap. 9. The values of l for each n are given by l D
n; n � 2; : : : ; 1 or 0 (n Dodd or even). The values of m are m D �l; : : : ;Cl . The
quantum number n D 0; : : : ;1. The energy level diagram
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Fig. 15.1 The spectrum of the three-dimensional harmonic oscillator. States up to n D 4 are
shown

E.n/ D nC 3

2
(15.15)

for this case is shown in Fig. 15.1. The three dimensional harmonic oscillator finds
useful applications in a variety of problems in physics.

Example 2. Isotropic harmonic oscillator in five dimensions

This problem is of interest in nuclear physics, in the study of quadrupole oscil-
lations of a liquid drop. The problem is best solved by introducing coordinates
˛	.	 D 0;˙1;˙2/ and momenta �	.	 D 0;˙1;˙2/, called Bohr variables. The
coordinates ˛	 are the five components of a quadrupole (rank-2) tensor with respect
to rotations. The Hamiltonian in dimensionless units is

H D 1

2

 
X

	

�2	 C
X

	

˛2	

!

: (15.16)

This Hamiltonian can be rewritten as

H D C1.u.5//C 5

2
: (15.17)

The basis states are labelled by the totally symmetric representations Œn; 0; 0; 0; 0� �
Œn� of u.5/. The complete labelling is jn; �; ��; l;mi with

ˇ
ˇ
ˇ
ˇ̌
ˇ

u.5/ � so.5/ � so.3/ � so.2/
# # # #
n �; �� l m

+

: (15.18)

The branching of the representations Œn� of u.5/ is given in Chap. 9, Sect. 9.6. The
energy level diagram for this case
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Fig. 15.2 The spectrum of the five-dimensional harmonic oscillator. States up to n D 4 are shown

E.n/ D nC 5

2
(15.19)

is given in Fig. 15.2.

15.2.2 The Coulomb Problem

The Hamiltonian operator for this problem, when „ D m D 1 and k D 1, is

H D p2

2
� 1

r
D �r2

2
� 1

r
: (15.20)

While the derivation of (15.13) is straightforward, the rewriting of H in terms of
Casimir operators here is more involved (see Examples 3 and 4). For bound states,
where E D hH i < 0, the HamiltonianH can be rewritten as

H D � 1

2
h
C2.so.� C 1//C �

��1
2

�2i : (15.21)

The degeneracy algebra of the �-dimensional Coulomb problem is thus so.� C 1/.
(The Coulomb problem is a case in which the Hamiltonian H is not linear in the
Casimir operators, but rather its inverse, 1=H , is.) The eigenstates are characterized
by the totally symmetric irreducible representations Œ!; 0; 0; : : : ; 0� � Œ!� of so.�C
1/ with eigenvalues

E.!/ D � 1

2
h
!.! C � � 1/C �

��1
2

�2i ! D 0; 1; : : : ;1: (15.22)
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Example 3. Coulomb problem in three dimensions

The Coulomb problem in three dimensions (also called the Kepler problem) was
the first problem for which degeneracy algebras were introduced, initially by Pauli
(1926) following the classical treatment of Runge and Lenz, and subsequently by
Fock (1935) and Bargmann (1936).

The problem is best solved in the familiar spherical coordinates, r; #; '. In order
to derive (15.21), one begins by introducing the angular momentum operator L and
the so-called normalized Runge-Lenz vector A

L D r � p

A D 1p�2H Œ
1

2
.p � L � L � p/ � r

r
�: (15.23)

Using the commutation relations of r and p D 1
i
r , one can show that the

six components Li .i D 1; 2; 3/ and Ai.i D 1; 2; 3/ satisfy, when E < 0, the
commutation relations of the Lie algebra so.4/

�
Li ; Lj

� D i"ijkLk
�
Li ; Aj

� D i"ijkAk
�
Ai; Aj

� D i"ijkLk , (15.24)

while when E > 0 they satisfy the commutation relations of the non-compact
algebra so.3; 1/

�
Li ; Lj

� D i"ijkLk
�
Li ; Aj

� D i"ijkAk
�
Ai; Aj

� D �i"ijkLk . (15.25)

The components of the angular momentum and Runge-Lenz vector are thus, when
E < 0, elements of the Lie algebra so.4/. This algebra has two quadratic Casimir
operators, C2 and C 0

2 that can be written as

C2.so.4// D �
L2 C A2

�

C 0
2.so.4// D L 	 A . (15.26)

After lengthy manipulations, the Hamiltonian operator can be written as

H D � 1

2 .C2.so.4//C 1/
: (15.27)



15.2 Degeneracy Algebras in � � 2 Dimensions 253

As one can see from the definition (15.23) of the Runge-Lenz vector, the scalar
product of L and A vanishes, L 	 A D 0. The second invariant operator does
not appear therefore in H . The basis states of so.4/ are labelled by two quantum
numbers Œ!1; !2�. However, due to the vanishing of C 0

2.so.4//, only the totally
symmetric representations Œ!� � Œ!; 0� appear. The energy eigenvalues can be
obtained from the eigenvalues of the Casimir operators in Chap. 7. They are given by

E.!/ D � 1

2.!.! C 2/C 1/
! D 0; 1; : : : ;1: (15.28)

In order to label completely the states one needs to consider the branching so.4/ �
so.3/ � so.2/. This branching was considered in Chap. 9. The complete labelling
of states is j!; l;mi, with branching l D !;! � 1; : : : ; 0 and m D �l; : : : ;Cl . It
is customary to introduce the “principal quantum number” n D ! C 1. In terms of
this quantum number the energy levels are

E.n; l;m/ D � 1

2n2
: (15.29)

This is the celebrated Bohr formula that gives the energy levels of the non-relativistic
hydrogen atom. The corresponding energy level diagram is shown in Fig. 15.3.
The states jn; l;mi are degenerate with total degeneracy n2. Therefore so.4/ is
the degeneracy algebra of the Coulomb problem in � D 3 dimensions. A detailed
account is given in Wybourne (1974).
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01233

L

Fig. 15.3 The spectrum of the three-dimensional Coulomb problem. States up to ! D 3 are
shown. The principal quantum number is n D ! C 1
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Example 4. Coulomb problem in six dimensions

This problem and its application to the three-body problem is best solved in
hyperspherical Jacobi coordinates. One first introduces two vectors � and � or
equivalently �; #�; '� and �; #�; '�. The Jacobi hyperspherical coordinates are
r; �; #�; '�; #�; '� with

r D �
�2 C �2

�1=2
� D arctan .�=�/ : (15.30)

Introducing the notation

qi � .�;�/ pi � �
p�;p�

�
i D 1; : : : ; 6; (15.31)

one can construct the 15 elements of the Lie algebra so.6/ by

Lij D qipj � qj pi ; i; j D 1; : : : ; 6 i < j: (15.32)

To these, one can add the six components of the normalized Runge-Lenz vector

Ai D 1p�2H
	
1

2

�
Lijpj � pjLji

� � qi

r



i D 1; : : : ; 6: (15.33)

The 21 elements Lij,Ai satisfy the commutation relations

�
Lij; Lkl

� D i
�
ıikLjl C ıjlLik � ıilLjk � ıjkLil

�

�
Ai ; Aj

� D iLij
�
Lij; Ak

� D i
�
ıikAj � ıjkAi

�
: (15.34)

These commutation relations are isomorphic to those of so.7/. The 21 elements also
commute with the HamiltonianH

�
Lij;H

� D ŒAi ;H� D 0 (15.35)

where

H D 1

2

�
p2� C p2�

�
� 1

r
: (15.36)

The algebra so.7/ possesses three Casimir operators C2; C4; C6. The quadratic
operator is

C2.so.7// D
6X

i<j

L2ij C
6X

i

A2i : (15.37)
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After some lengthy manipulations the Hamiltonian can be written as

H D � 1

2
�
C2.so.7//C 25

4

� : (15.38)

The expectation value of this Hamiltonian in the representation Œ!� � Œ!; 0; 0� is

E.!/ D � 1

2
�
!.! C 5/C 25

4

� ; ! D 0; 1; : : : ;1: (15.39)

The representations of so.7/ that appear are the totally symmetric representations
Œ!�, in view of conditions analogous to L 	 A D 0 in the three dimensional
case. In order to label completely the states, one needs to study the branching
of representations of so.7/. This can be done using the techniques of Chap. 6.
The labelling of states appropriate for the choice of coordinates in this example is
so.7/ � so.6/ � so�.3/˚ so�.3/ � so.3/ � so.2/ with quantum numbers

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

so.7/ � so.6/ � so.3/˚ so.3/ � so.3/ � so.2/
# # # # #
! � l�; l� L M

+

: (15.40)

Here � D !;! � 1; : : : ; 1; 0, and the values of l�; l� are obtained by partitioning �
as � D 2n� C l� C l�; n� D 0; 1; : : :. The values of L are obtained from

ˇ
ˇl� C l�

ˇ
ˇ �

L � ˇ
ˇl� � l�

ˇ
ˇ and M D �L; : : : ;CL as usual. The energy level diagram of the six

dimensional Coulomb problem is shown in Fig. 15.4. The spectrum is degenerate
and so.7/ is the degeneracy algebra. The Coulomb problem in six dimensions is of
interest in the three-body problem, in particular the three quark system in hadronic
physics (Santopinto et al. 1995).
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Fig. 15.4 The spectrum of the six-dimensional Coulomb problem. States up to ! D 2 are shown
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Table 15.1 Exactly solvable quantum mechanical problems in one
dimension

Case V .x/ E.n/

.I / 1
2


.
�1/

sin2 x
1
2
.
 C 2n/

2

.II/ � 1
2


.
�1/

cosh2 x
� 1
2
.
 � 1� n/2

.III/ 
2
�
e�2x � 2e�x

� �
2 C 1
2

h
2
p
2
.nC 1

2
/� .nC 1

2
/2
i

.IV/ 1
2

2x2 


�
nC 1

2

�

15.3 Degeneracy Algebra in � D 1 Dimension

The case � D 1 is a special case, since the degeneracy algebra of the one-
dimensional Hamiltonian, in units „ D m D 1,

H D �1
2

d2

dx2
C V.x/ (15.41)

is always the trivial algebra u.1/ � so.2/. Because in one dimension there is no
rotational invariance to impose, the class of exactly solvable problems in � D 1

dimension, that is of problems that can be written in terms of Casimir operators
of an algebra g, is much wider than that in � � 2 dimensions. A partial list is
given in Table 15.1. The Hamiltonian for these problems is either linear, case IV, or
quadratic, cases I–III, in the Casimir operators and hence the eigenvalues,E.n/, are
either linear or quadratic in the quantum number n. The strength of the potential is
given in the table either by 
.
 � 1/ or by 
2.

Example 5. The one dimensional harmonic oscillator

The one dimensional harmonic oscillator, V.x/ D 1
2
kx2, in units k D 1, has been

treated in Chap. 9. Its Hamiltonian can be written as

H D C1.u.1//C 1

2
(15.42)

with eigenvalues

E.n/ D nC 1

2
n D 0; 1; : : : ;1. (15.43)

15.4 Dynamical Algebras

The degeneracy algebra gd allows one to solve the eigenvalue problem and thus
classify the degenerate multiplets. However, in the cases discussed in the previous
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Chap. 14 all states of the system were assigned to an irreducible representation
of an algebra g, and all operators H;T; :: were written in terms of elements of g.
It is of interest to do the same for quantum mechanical problems. This problem
is often called the embedding problem. The algebra g that contains the degeneracy
algebra g � gd is called the dynamical algebra. Included in the dynamical algebra g
there are now raising and lowering operators that relate the different representations
of g. The embedding problem does not have a unique solution. An additional
complication is that often the quantum mechanical problem has an infinite number
of bound (E < 0) eigenstates, as in the two cases of Sect. 15.2. The dynamical
algebra must therefore be either a non-compact algebra or obtained by a limiting
process (the contraction process discussed in Chap. 1, Sect. 1.17) from a compact
algebra. Both of these problems are outside the scope of this book and will therefore
be only mentioned here.

15.5 Dynamical Algebras in � � 2 Dimensions

15.5.1 Harmonic Oscillator

The degeneracy algebra is u.�/. A commonly used dynamical algebra is the
symplectic algebra sp.2�;R/ � u.�/. (Hwa and Nuyts, 1966) However, this
embedding has the disadvantage that two irreducible representations are needed
to accommodate all the states of the harmonic oscillator. A simpler embedding is
obtained by drawing on the results of Chap. 9. Introducing a fictitious coordinate,
s, and momentum, ps D 1

i
d
ds , one can construct the algebra u.� C 1/. The algebra

u.� C 1/ � u.�/ can be used as a dynamical algebra of the harmonic oscillator.
All states are assigned to the representation ŒN � of u.� C 1/ with N ! 1. The
degenerate multiplets are labelled by n D 0; 1; : : : ; N ! 1.

15.5.2 Coulomb Problem

The degeneracy algebra is so.� C 1/. The non-compact algebras so.� C 1; 2/ �
so.� C 1; 1/ � so.� C 1/ have been used as dynamical algebras (Bacry 1966;
Sudarshan et al. 1965; Barut 1969). However, the representation theory of non-
compact algebras is rather complicated and requires special attention. Again,
a simpler embedding is obtained by introducing a fictitious coordinate s and
momentum 1

i
d
ds , and constructing the algebra so.� C 2/. This algebra, instead

of so.� C 1; 1/, can be used as dynamical algebra of the Coulomb problem in
� � 2 dimensions. All states are assigned to a representation Œ� � of so.� C 2/

with � ! 1. The degenerate multiplets are labelled by ! D 0; 1; : : : ;

� ! 1.
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15.6 Dynamical Algebra in � D 1 Dimension

The algebra u.2/ has been used extensively as a dynamical algebra in � D 1

dimension. In particular, this algebra has been used in the study of two quantum
mechanical problems of practical interest, already listed in Sect. 15.3, V.x/ D
� k

cosh2 x
(called the Pöschl-Teller potential) and V.x/ D k.e�2x � 2e�x/ (called

the Morse potential).

15.6.1 Pöschl-Teller Potential

The Hamiltonian operator for this problem in units „ D m D 1 is

H D �1
2

d2

dx2
� k

cosh2 x
; (15.44)

where x is a dimensionless coordinate. In order to construct the dynamical algebra
u.2/ � su.2/, introduce two variables # and ' and consider the differential
realization of su.2/ � so.3/ on the sphere, given in Chap. 11,

Iz D �i @
@'

I˙ D �ie�i'
�
@

@#
� i cot#

@

@'

�
(15.45)

and

I 2 D �
	

1

sin#

@

@#

�
sin#

@

@#

�
C 1

sin2 #

@2

@'2



: (15.46)

The simultaneous eigenfunctions of I 2 and Iz

I 2�mj D j.j C 1/�mj

Iz�
m
j D m�mj (15.47)

with j andm integer, are

�mj .#; '/ D umj .#/ e
im' (15.48)

where umj .#/ satisfies the equation
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� 1

sin#

@

@#

�
sin#

@

@#

�
C m2

sin2 #



umj .#/ D j.j C 1/umj .#/ : (15.49)

The solutions of (15.49) are the associated Legendre functions Pm
j .cos#/ and the

functions �mj .#; '/ are just the spherical harmonics Yjm.#; '/. The substitution

cos# D tanhx � 1 < x < C1 (15.50)

brings (15.49) to the form

	
� d2

dx2
� j.j C 1/

cosh2 x



umj .x/ D �m2umj .x/: (15.51)

This is, apart from a factor 2, the Schrödinger equation with Pöschl-Teller potential.
The strength of the potential k is related to the eigenvalue of the Casimir operator
of su.2/ � so.3/, j.j C 1/, by k D 1

2
j.j C 1/. The Hamiltonian operator can be

written as

H D �1
2
I 2z (15.52)

with eigenvalues

E.m/ D �1
2
m2: (15.53)

In the bra-ket notation, the eigenfunctions can be written as

ˇ̌
ˇ
ˇ
ˇ
ˇ

u.2/ � so.2/
# #
j m

+

: (15.54)

All eigenstates are assigned to the representation j of u.2/. This algebra is the
dynamical algebra of the problem. The Hamiltonian is written in terms of elements
of this algebra, in fact in terms of the Casimir operator Iz of the subalgebra so.2/,
which is the degeneracy algebra of the problem. There is a peculiarity in this case
due to the fact that the algebra so.2/ is an orthogonal algebra in an even number of
dimensions and thus m D �j; : : : ;Cj . Since the eigenvalues depend only on m2,
they are double degenerate. They correspond to the eigenvalues of the potential and
its reflection. The algebra u.2/ should therefore be used as dynamical algebra with
the proviso that only states with m � 0 should be considered. The spectrum of the
Pöschl-Teller potential with this proviso is shown in Fig. 15.5. The Pöschl-Teller
potential is of interest in molecular physics (Iachello and Oss 1993). In applications
in molecular physics, often the quantum numberm D j; j � 1; : : : ; 1; 0 is replaced
by the so-called vibrational quantum number v D j�m; v D 0; 1; : : : ; j . In contrast



260 15 Degeneracy Algebras and Dynamical Algebras

V
(x

)

x
m 0

m 1

m 2

m 3

m 4

Fig. 15.5 The spectrum of the one-dimensional Pöschl-Teller potential superimposed to the
potential. The strength of the potential is characterized by j D 4

with the harmonic oscillator of Example 6, the Pöschl-Teller potential has a finite
number of bound states. Thus j D finite, and the representations of u.2/ that appear
in this problem are the usual finite dimensional representations.

15.6.2 Morse Potential

The Hamiltonian for this problem in units „ D m D 1 is

H D �1
2

d2

dx2
C k

�
e�2x � 2e�x� : (15.55)

In order to construct the spectrum generating algebra, introduce again two variables
s and t . A realization of u.2/ in terms of differential operators s @

@s
; s @

@t
; t @
@s
; t @
@t

is

OFx D 1

2

�
st � @2

@s@t

�

OFy D 1

2i

�
s
@

@t
� t

@

@s

�

OFz D 1

4

�
s2 � t2 � @2

@s2
C @2

@t2

�

ON D 1

2
.s2 C t2 � @2

@s2
� @2

@t2
� 2/: (15.56)

This realization is the oscillator realization of Chap. 9, Sect. 9.3 written in terms
of differential operators. A hat is put in (15.56) to distinguish an operator from its
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eigenvalue. Consider now the simultaneous eigenstates of ON and OFy . Introducing
polar coordinates

s D r cos' 0 � r < 1
t D r sin ' 0 � ' < 2�; (15.57)

the two operators can be rewritten as

OFy D � i
2

@

@'

ON D 1

2

�
r2 � 1

r

@

@r
r
@

@r
� 1

r2
@2

@'2

�
� 1: (15.58)

The simultaneous eigenstates of ON and OFy can be written as

 N;my .r; '/ D RN;my .r/e
2imy' (15.59)

where 2my D integer since should be periodic in ' with period 2� , andRN;my .r/
satisfies

1

2

 

�1
r

@

@r
r
@

@r
C 4m2

y

r2
C r2

!

RN;my .r/ D .N C 1/RN;my .r/: (15.60)

By the change of variable

r D p
N C 1e�x=2 (15.61)

this equation can be brought to the form

"

� d2

dx2
C
�
N C 1

2

�2 �
e�2x � 2e�x�

#

RN;my .x/ D �m2
yRN;my .x/: (15.62)

This is, apart from a factor 2, the Schrödinger equation with Morse potential. The
strength of the potential k is related to the eigenvalue of the Casimir operator of
su.2/ by

k D 1

2

�
N C 1

2

�2
: (15.63)

The Hamiltonian operator can be written as

H D �1
2

OF 2
y (15.64)
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Fig. 15.6 The spectrum of the one-dimensional Morse potential. The strength of the potential is
characterized by F D N

2
D 4

with eigenvalues

E.my/ D �1
2
m2
y: (15.65)

In bra-ket notation, the eigenfunctions can be written as

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

u.2/ � u.1/
# #
F my

+

; (15.66)

where, as discussed in Chap. 9, Sect. 9.3, F D N
2

. The values of my are my D
�N

2
; : : : ;CN

2
D �F; : : : ;CF , but, for reasons given above, only my � 0 need

be considered. The spectrum of the Morse potential is shown in Fig. 15.6. The
Morse potential is of great interest in molecular physics (Alhassid et al. 1983). Here
also it is customary to introduce a vibrational quantum number v D N

2
� my; v D

0; 1; : : : ; N
2

or N�1
2

(N Deven or odd), and the number of bound states is finite. The
Morse potential problem in one dimension is solvable not only for the values such
thatN integer, but for any strength k. The general solution requires however the use
of projective representations of u.2/ rather than tensor representations. Projective
representations of u.2/ (Bargmann, 1947) are outside the scope of these lectures
note and will not be discussed.

The Morse potential has also been associated with representations of the non-
compact algebra su.1; 1/ (Cordero and Hojman, 1970).
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15.6.3 Lattice of Algebras

The concept of lattice of algebras introduced in Chap. 9, can be used here as
well. One dimensional exactly solvable problems are characterized by the lattice
of algebras

u.2/
j

u.1/ � so.2/
(15.67)

Here u.2/ is the dynamical algebra and u.1/ � so.2/ is the degeneracy algebra.
Because of the isomorphism u.1/ � so.2/, all exactly solvable problems in � D 1

dimension have the same structure. In particular, the two problems discussed in
Sects. 6.1 and 6.2 have the same bound state spectrum

E.m/ D �1
2
m2: (15.68)

Problems with the same bound (E < 0) spectrum are called isospectral. (They
differ, however, in the scattering (E > 0) spectrum, not discussed here.)

The algebra u.2/ can also be used as a dynamical algebra of the harmonic
oscillator of Sect. 15.3. The Hamiltonian is now linear in the Casimir operator C1
of u.1/ with eigenvalue

E.n/ D nC 1

2
: (15.69)

The harmonic oscillator has an infinite number of bound states and thus N ! 1
and n D 0; 1; : : : ;1.
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Degeneracy algebra, 247
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Derived algebras, 11
Direct sum, 6
Dynamical algebra, 256
Dynamic symmetry, 236

bosonic system, 236
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Dynkin diagram, 26

Embedding problem, 257
Energy formula, 236
Energy level diagram

u.4/, 238
u.6/, 240

Enveloping algebra, 34
Equivalence relations, 67
Exactly solvable problem, 247, 248, 256
Exponential map, 53
Extremal state, 211

Fermionic operator, 175

Gel’fand pattern, 73
Gell-Mann matrix, 205
Gürsey–Radicati u.6/, 186, 244

Harmonic oscillator
embedding, 257
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one-dimensional, 127, 263
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Homomorphism, 48
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Identity, 37

Infinitesimal transformation, 56
Internal degrees of freedom, 184, 187
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Invariant operator. See Casimir operator
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Inverse, 37
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Jacobi identity, 2
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Kirillov classification, 17
Kronecker product, 62
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missing, 91
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classification, 27
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special unitary, 27, 134, 178
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spinor, 69
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u.12/, 191
u.14/, 188
unitary, 27, 134, 178, 193, 202

Lie group
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conformal, 51
definition, 37
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general linear, 39
generator, 55
infinitesimal element, 54

Lorentz, 44
matrix, 38
non-compact, 44
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Poincare’, 50
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SO.1; 1/, 44
SO.2/, 43
SO.3/, 45, 47
special linear, 39
special orthogonal, 41
special unitary, 40
SU.2/, 46, 47
symplectic, 42
translation, 48
unitary, 40

Mass formula, 245
Matrix exponential, 54
Matrix properties, 38
Metric tensor, 9
Morse potential, 260

Operator
lowering, 24
raising, 24

Pauli matrix, 204
Permutation group, 63, 166
Pöschl-Teller potential, 258

Quantum number, 61

Racah form. See Lie algebra, Racah form
Racah’s factorization lemma, 111
Rank, 21
Realization

bosonic, 35, 125
differential, 34, 193
fermionic, 36, 175
Grassman, 35, 198
matrix, 34, 201

Recoupling coefficient
computation, 118
definition, 115
double, 120
so.3/, 116
symmetry properties, 119

Reduction formula, 122, 123
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dimension of, 77
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irreducible, 61, 66
mixed symmetry, 77
of so.n/, 67–69
spinor, 68
of sp.n/, 67
of su.n/, 66
tensor, 66
totally antisymmetric, 76
totally symmetric, 76
of u.n/, 66

Root, 21
long, 26
short, 26

Root diagram, 22
Root vector, 27, 29
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five-dimensional, 241
three-dimensional, 238

Runge-Lenz vector, 252

Semidirect sum, 9
Space

coset, 57
homogeneous, 57
Riemannian, 57
symmetric, 57

Spectrum generating algebra, 235
Spherical harmonic, 197
Spinor, 198
Structure constants, 2
Subalgebra

Cartan, 21

definition, 5
invariant, 8
maximal Abelian (see subalgebra, Cartan)

Subalgebra chain, 72
canonical, 72
containing so.3/, 134
containing spin.3/, 178
non-canonical, 87

Tensor
antisymmetric, 62
irreducible, 61
symmetric, 62

Tensor calculus, 142
Tensor operator

adjoint, 114
coupling of, 121
definition, 107
double, 187
so.3/, 108

Tensor product, 83

Vacuum, 35
Vector

column, 201
row, 201

Vector space, 3, 61

Wigner–Eckart theorem, 109
Wigner u.4/, 184, 243

Young operator, 64
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